These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35303031)

  • 21. Selective particle attention: Rapidly and flexibly selecting features for deep reinforcement learning.
    Blakeman S; Mareschal D
    Neural Netw; 2022 Jun; 150():408-421. PubMed ID: 35358888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-Agent Reinforcement Learning via Adaptive Kalman Temporal Difference and Successor Representation.
    Salimibeni M; Mohammadi A; Malekzadeh P; Plataniotis KN
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments.
    Cross L; Cockburn J; Yue Y; O'Doherty JP
    Neuron; 2021 Feb; 109(4):724-738.e7. PubMed ID: 33326755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A deep reinforcement learning algorithm for the rectangular strip packing problem.
    Fang J; Rao Y; Shi M
    PLoS One; 2023; 18(3):e0282598. PubMed ID: 36928505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. All by Myself: Learning individualized competitive behavior with a contrastive reinforcement learning optimization.
    Barros P; Sciutti A
    Neural Netw; 2022 Jun; 150():364-376. PubMed ID: 35358886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The asymmetric learning rates of murine exploratory behavior in sparse reward environments.
    Ohta H; Satori K; Takarada Y; Arake M; Ishizuka T; Morimoto Y; Takahashi T
    Neural Netw; 2021 Nov; 143():218-229. PubMed ID: 34157646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Goal-directed learning of features and forward models.
    Saeb S; Weber C; Triesch J
    Neural Netw; 2009; 22(5-6):586-92. PubMed ID: 19616917
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuronal tuning in a brain-machine interface during Reinforcement Learning.
    Mahmoudi B; Digiovanna J; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4491-4. PubMed ID: 19163713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inverse Reinforcement Learning in Tracking Control Based on Inverse Optimal Control.
    Xue W; Kolaric P; Fan J; Lian B; Chai T; Lewis FL
    IEEE Trans Cybern; 2022 Oct; 52(10):10570-10581. PubMed ID: 33877993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-shot learning and behavioral eligibility traces in sequential decision making.
    Lehmann MP; Xu HA; Liakoni V; Herzog MH; Gerstner W; Preuschoff K
    Elife; 2019 Nov; 8():. PubMed ID: 31709980
    [TBL] [Abstract][Full Text] [Related]  

  • 32. StARformer: Transformer With State-Action-Reward Representations for Robot Learning.
    Shang J; Li X; Kahatapitiya K; Lee YC; Ryoo MS
    IEEE Trans Pattern Anal Mach Intell; 2023 Nov; 45(11):12862-12877. PubMed ID: 36067106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inference-Based Posteriori Parameter Distribution Optimization.
    Wang X; Li T; Cheng Y; Chen CLP
    IEEE Trans Cybern; 2022 May; 52(5):3006-3017. PubMed ID: 33027029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generalization of value in reinforcement learning by humans.
    Wimmer GE; Daw ND; Shohamy D
    Eur J Neurosci; 2012 Apr; 35(7):1092-104. PubMed ID: 22487039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generalized attention-weighted reinforcement learning.
    Bramlage L; Cortese A
    Neural Netw; 2022 Jan; 145():10-21. PubMed ID: 34710787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the benefits of representation regularization in invariance based domain generalization.
    Shui C; Wang B; Gagné C
    Mach Learn; 2022; 111(3):895-915. PubMed ID: 35510180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Curiosity-driven recommendation strategy for adaptive learning via deep reinforcement learning.
    Han R; Chen K; Tan C
    Br J Math Stat Psychol; 2020 Nov; 73(3):522-540. PubMed ID: 32080828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TCGL: Temporal Contrastive Graph for Self-Supervised Video Representation Learning.
    Liu Y; Wang K; Liu L; Lan H; Lin L
    IEEE Trans Image Process; 2022; 31():1978-1993. PubMed ID: 35157584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Meta-Reinforcement Learning in Non-Stationary and Dynamic Environments.
    Bing Z; Lerch D; Huang K; Knoll A
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3476-3491. PubMed ID: 35737617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reinforcement learning in ophthalmology: potential applications and challenges to implementation.
    Nath S; Korot E; Fu DJ; Zhang G; Mishra K; Lee AY; Keane PA
    Lancet Digit Health; 2022 Sep; 4(9):e692-e697. PubMed ID: 35906132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.