These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 35303563)

  • 1. Simultaneous feature engineering and interpretation: Forecasting harmful algal blooms using a deep learning approach.
    Kim T; Shin J; Lee D; Kim Y; Na E; Park JH; Lim C; Cha Y
    Water Res; 2022 May; 215():118289. PubMed ID: 35303563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Four Major South Korea's Rivers Using Deep Learning Models.
    Lee S; Lee D
    Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29937531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Employing hybrid deep learning for near-real-time forecasts of sensor-based algal parameters in a Microcystis bloom-dominated lake.
    Wang L; Shan K; Yi Y; Yang H; Zhang Y; Xie M; Zhou Q; Shang M
    Sci Total Environ; 2024 Apr; 922():171009. PubMed ID: 38402991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forecasting freshwater cyanobacterial harmful algal blooms for Sentinel-3 satellite resolved U.S. lakes and reservoirs.
    Schaeffer BA; Reynolds N; Ferriby H; Salls W; Smith D; Johnston JM; Myer M
    J Environ Manage; 2024 Jan; 349():119518. PubMed ID: 37944321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-monthly time scale forecasting of harmful algal blooms intensity in Lake Erie using remote sensing and machine learning.
    Gupta A; Hantush MM; Govindaraju RS
    Sci Total Environ; 2023 Nov; 900():165781. PubMed ID: 37499836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-optimization of training dataset improves forecasting of cyanobacterial bloom by machine learning.
    Kim J; Jung W; An J; Oh HJ; Park J
    Sci Total Environ; 2023 Mar; 866():161398. PubMed ID: 36621510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Algal Community Stability in Harmful Algal Blooms in River-Connected Lakes.
    Kim MS; Kim KH; Hwang SJ; Lee TK
    Microb Ecol; 2021 Aug; 82(2):309-318. PubMed ID: 33469721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based efficient drone-borne sensing of cyanobacterial blooms using a clique-based feature extraction approach.
    Shin J; Lee G; Kim T; Cho KH; Hong SM; Kwon DH; Pyo J; Cha Y
    Sci Total Environ; 2024 Feb; 912():169540. PubMed ID: 38145679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using convolutional neural network for predicting cyanobacteria concentrations in river water.
    Pyo J; Park LJ; Pachepsky Y; Baek SS; Kim K; Cho KH
    Water Res; 2020 Nov; 186():116349. PubMed ID: 32882452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the key factors determining spatio-temporal heterogeneity of cyanobacterial bloom dynamics in the Nakdong River with consecutive large weirs.
    Park HK; Lee HJ; Heo J; Yun JH; Kim YJ; Kim HM; Hong DG; Lee IJ
    Sci Total Environ; 2021 Feb; 755(Pt 2):143079. PubMed ID: 33127129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-term Lake Erie algal bloom prediction by classification and regression models.
    Ai H; Zhang K; Sun J; Zhang H
    Water Res; 2023 Apr; 232():119710. PubMed ID: 36801534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harmful algal blooms and liver diseases: focusing on the areas near the four major rivers in South Korea.
    Lee S; Kim J; Choi B; Kim G; Lee J
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2019; 37(4):356-370. PubMed ID: 31809645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of harmful algal blooms in large water bodies using the combined EFDC and LSTM models.
    Zheng L; Wang H; Liu C; Zhang S; Ding A; Xie E; Li J; Wang S
    J Environ Manage; 2021 Oct; 295():113060. PubMed ID: 34167054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel single-parameter approach for forecasting algal blooms.
    Xiao X; He J; Huang H; Miller TR; Christakos G; Reichwaldt ES; Ghadouani A; Lin S; Xu X; Shi J
    Water Res; 2017 Jan; 108():222-231. PubMed ID: 27847147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fishing in greener waters: Understanding the impact of harmful algal blooms on Lake Erie anglers and the potential for adoption of a forecast model.
    Gill D; Rowe M; Joshi SJ
    J Environ Manage; 2018 Dec; 227():248-255. PubMed ID: 30199720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study.
    Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ
    J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algal blooms in the middle and lower Han River: Characteristics, early warning and prevention.
    Xin X; Zhang H; Lei P; Tang W; Yin W; Li J; Zhong H; Li K
    Sci Total Environ; 2020 Mar; 706():135293. PubMed ID: 31846885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approach of multi-element fusion method for harmful algal blooms prediction.
    Chen X; Fu Y; Zhou H
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):32083-32094. PubMed ID: 36462075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in forecasting harmful algal blooms using machine learning models: A case study with Planktothrix rubescens in Lake Geneva.
    Derot J; Yajima H; Jacquet S
    Harmful Algae; 2020 Nov; 99():101906. PubMed ID: 33218452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.