These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35303597)

  • 1. Assessing the responses of vegetation to meteorological drought and its influencing factors with partial wavelet coherence analysis.
    Zhou Z; Liu S; Ding Y; Fu Q; Wang Y; Cai H; Shi H
    J Environ Manage; 2022 Mar; 311():114879. PubMed ID: 35303597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of solar-induced chlorophyll fluorescence (SIF) and its response to meteorological drought in the Yellow River Basin.
    Wu H; Zhou P; Song X; Sun W; Li Y; Song S; Zhang Y
    J Environ Manage; 2024 Jun; 360():121023. PubMed ID: 38733837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Responses of solar-induced chlorophyll fluorescence to meteorological drought across the Loess Plateau, China.].
    Cao YX; Huang Z; Xu XJ; Chen S; Wang Z; Feng H; Yu Q; He JQ
    Ying Yong Sheng Tai Xue Bao; 2022 Feb; 33(2):457-466. PubMed ID: 35229520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of drought propagation and effects of water resources on vegetation in the karst area of Southwest China.
    Liu Y; Shan F; Yue H; Wang X
    Sci Total Environ; 2023 Sep; 891():164663. PubMed ID: 37285994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation framework for quantifying vegetation loss and recovery in response to meteorological drought based on SPEI and NDVI.
    Wu C; Zhong L; Yeh PJ; Gong Z; Lv W; Chen B; Zhou J; Li J; Wang S
    Sci Total Environ; 2024 Jan; 906():167632. PubMed ID: 37806579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced drought detection and monitoring using sun-induced chlorophyll fluorescence over Hulun Buir Grassland, China.
    Liu Y; Dang C; Yue H; Lyu C; Dang X
    Sci Total Environ; 2021 May; 770():145271. PubMed ID: 33513493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the responses of different vegetation types to drought with satellite solar-induced chlorophyll fluorescence over the Yunnan-Guizhou Plateau.
    Luo Y; Yang J; Yang S; Wang A; Shuo S; Du L
    Opt Express; 2023 Oct; 31(22):35565-35582. PubMed ID: 38017724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Scale Dependence Between PM
    Wu SQ; Jin JN; Zheng DY; Gu YY; Zhao WJ
    Huan Jing Ke Xue; 2023 Dec; 44(12):6441-6451. PubMed ID: 38098373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of vegetation ecosystems to flash drought with solar-induced chlorophyll fluorescence over the Hai River Basin, China during 2001-2019.
    Yao T; Liu S; Hu S; Mo X
    J Environ Manage; 2022 Jul; 313():114947. PubMed ID: 35421694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy.
    Liu L; Yang X; Zhou H; Liu S; Zhou L; Li X; Yang J; Han X; Wu J
    Sci Total Environ; 2018 Jun; 625():1208-1217. PubMed ID: 29996417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the suitability of using vegetation indices to monitor the response of Africa's terrestrial ecoregions to drought.
    Lawal S; Hewitson B; Egbebiyi TS; Adesuyi A
    Sci Total Environ; 2021 Oct; 792():148282. PubMed ID: 34146810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grassland productivity response to droughts in northern China monitored by satellite-based solar-induced chlorophyll fluorescence.
    Wang X; Pan S; Pan N; Pan P
    Sci Total Environ; 2022 Jul; 830():154550. PubMed ID: 35302027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Assessment of the lagging effect of vegetation response and loss probability in the Pearl River basin under drought stress].
    Gong ZJ; Lei Y; Zhong LL; Wu CH
    Ying Yong Sheng Tai Xue Bao; 2024 Apr; 35(4):1083-1091. PubMed ID: 38884243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is satellite Sun-Induced Chlorophyll Fluorescence more indicative than vegetation indices under drought condition?
    Cao J; An Q; Zhang X; Xu S; Si T; Niyogi D
    Sci Total Environ; 2021 Oct; 792():148396. PubMed ID: 34465046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the Impact of Summer Drought on Vegetation Growth Using Space-Based Solar-Induced Chlorophyll Fluorescence Across Extensive Spatial Measures.
    Pandiyan S; Govindjee G; Meenatchi S; Prasanna S; Gunasekaran G; Guo Y
    Big Data; 2022 Jun; 10(3):230-245. PubMed ID: 33983846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of vegetation normalized different vegetation index to different meteorological disaster indexes in karst region of Guangxi, China.
    Xie Y; Chen Y; Zhang Y; Li M; Xie M; Mo W
    Heliyon; 2023 Oct; 9(10):e20518. PubMed ID: 37790962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of interaction of multiple large-scale atmospheric circulations on precipitation dynamics in China.
    Dong H; Huang S; Wang H; Shi H; Singh VP; She D; Huang Q; Leng G; Gao L; Wei X; Peng J
    Sci Total Environ; 2024 May; 923():171528. PubMed ID: 38460687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Correlation analysis on normalized difference vegetation index (NDVI) of different vegetations and climatic factors in Southwest China].
    Zhang YD; Zhang XH; Liu SR
    Ying Yong Sheng Tai Xue Bao; 2011 Feb; 22(2):323-30. PubMed ID: 21608242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale climate variability controls on climate, vegetation coverage, lake and groundwater storage in the Lake Urmia watershed using SSA and wavelet analysis.
    Rezaei A; Gurdak JJ
    Sci Total Environ; 2020 Jul; 724():138273. PubMed ID: 32251878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects and contributions of meteorological drought on agricultural drought under different climatic zones and vegetation types in Northwest China.
    Cao S; Zhang L; He Y; Zhang Y; Chen Y; Yao S; Yang W; Sun Q
    Sci Total Environ; 2022 May; 821():153270. PubMed ID: 35085634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.