BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35303770)

  • 21. Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process.
    Kim H; Hwang SJ; Lee KS
    Environ Sci Technol; 2015 Feb; 49(3):1478-85. PubMed ID: 25602643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct Air Capture of CO
    Su J; Teng HH; Wan X; Zhang J; Liu CQ
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reducing the cost of Ca-based direct air capture of CO2.
    Zeman F
    Environ Sci Technol; 2014 Oct; 48(19):11730-5. PubMed ID: 25207956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amine reclaiming technologies in post-combustion carbon dioxide capture.
    Wang T; Hovland J; Jens KJ
    J Environ Sci (China); 2015 Jan; 27():276-89. PubMed ID: 25597687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamic and Experimental Study of the Energetic Cost Involved in the Capture of Carbon Dioxide by Aqueous Mixtures of Commonly Used Primary and Tertiary Amines.
    Arcis H; Coulier Y; Coxam JY
    Environ Sci Technol; 2016 Jan; 50(1):489-95. PubMed ID: 26630087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of Direct Air Capture Integrated with Wind Energy and Enhanced Oil Recovery.
    Datta A; Krishnamoorti R
    Environ Sci Technol; 2023 Feb; 57(5):2084-2092. PubMed ID: 36692891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The synthesis and the chemical and physical properties of non-aqueous silylamine solvents for carbon dioxide capture.
    Rohan AL; Switzer JR; Flack KM; Hart RJ; Sivaswamy S; Biddinger EJ; Talreja M; Verma M; Faltermeier S; Nielsen PT; Pollet P; Schuette GF; Eckert CA; Liotta CL
    ChemSusChem; 2012 Nov; 5(11):2181-7. PubMed ID: 22927114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuning Reactive Crystallization Pathways for Integrated CO
    Ochonma P; Gao X; Gadikota G
    Acc Chem Res; 2024 Feb; 57(3):267-274. PubMed ID: 38228186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cost Analysis of Direct Air Capture and Sequestration Coupled to Low-Carbon Thermal Energy in the United States.
    McQueen N; Psarras P; Pilorgé H; Liguori S; He J; Yuan M; Woodall CM; Kian K; Pierpoint L; Jurewicz J; Lucas JM; Jacobson R; Deich N; Wilcox J
    Environ Sci Technol; 2020 Jun; 54(12):7542-7551. PubMed ID: 32412237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct Air Capture Using Electrochemically Regenerated Anion Exchange Resins.
    Shu Q; Haug M; Tedesco M; Kuntke P; Hamelers HVM
    Environ Sci Technol; 2022 Aug; 56(16):11559-11566. PubMed ID: 35925794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CO
    Seipp CA; Williams NJ; Kidder MK; Custelcean R
    Angew Chem Int Ed Engl; 2017 Jan; 56(4):1042-1045. PubMed ID: 28001001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measuring the Absorption Rate of CO2 in Nonaqueous CO2-Binding Organic Liquid Solvents with a Wetted-Wall Apparatus.
    Mathias PM; Zheng F; Heldebrant DJ; Zwoster A; Whyatt G; Freeman CM; Bearden MD; Koech P
    ChemSusChem; 2015 Nov; 8(21):3617-25. PubMed ID: 26377774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.
    Bara JE; Camper DE; Gin DL; Noble RD
    Acc Chem Res; 2010 Jan; 43(1):152-9. PubMed ID: 19795831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strategies to Enhance Carbon Dioxide Capture in Metal-Organic Frameworks.
    Piscopo CG; Loebbecke S
    Chempluschem; 2020 Mar; 85(3):538-547. PubMed ID: 32196141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new class of single-component absorbents for reversible carbon dioxide capture under mild conditions.
    Barzagli F; Lai S; Mani F
    ChemSusChem; 2015 Jan; 8(1):184-91. PubMed ID: 25410150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production.
    Rau GH; Carroll SA; Bourcier WL; Singleton MJ; Smith MM; Aines RD
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10095-100. PubMed ID: 23729814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redox-Mediated pH Swing Systems for Electrochemical Carbon Capture.
    Seo H; Nitzsche MP; Hatton TA
    Acc Chem Res; 2023 Nov; 56(22):3153-3164. PubMed ID: 37949611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air.
    Choi S; Drese JH; Eisenberger PM; Jones CW
    Environ Sci Technol; 2011 Mar; 45(6):2420-7. PubMed ID: 21323309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Upscaling DAC Hubs with Wind Energy and CO
    Goldberg DS; Nawaz S; Lavin J; Slagle AL
    Environ Sci Technol; 2023 Dec; 57(51):21527-21534. PubMed ID: 38092028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy and material balance of CO2 capture from ambient air.
    Zeman F
    Environ Sci Technol; 2007 Nov; 41(21):7558-63. PubMed ID: 18044541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.