These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 35304099)

  • 1. The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta.
    Battle S; Gogonea V; Willard B; Wang Z; Fu X; Huang Y; Graham LM; Cameron SJ; DiDonato JA; Crabb JW; Hazen SL
    J Biol Chem; 2022 Apr; 298(4):101832. PubMed ID: 35304099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myeloperoxidase-catalyzed oxidation of cyanide to cyanate: A potential carbamylation route involved in the formation of atherosclerotic plaques?
    Delporte C; Zouaoui Boudjeltia K; Furtmüller PG; Maki RA; Dieu M; Noyon C; Soudi M; Dufour D; Coremans C; Nuyens V; Reye F; Rousseau A; Raes M; Moguilevsky N; Vanhaeverbeek M; Ducobu J; Nève J; Robaye B; Vanhamme L; Reynolds WF; Obinger C; Van Antwerpen P
    J Biol Chem; 2018 Apr; 293(17):6374-6386. PubMed ID: 29496995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein carbamylation renders high-density lipoprotein dysfunctional.
    Holzer M; Gauster M; Pfeifer T; Wadsack C; Fauler G; Stiegler P; Koefeler H; Beubler E; Schuligoi R; Heinemann A; Marsche G
    Antioxid Redox Signal; 2011 Jun; 14(12):2337-46. PubMed ID: 21235354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease.
    Zheng L; Nukuna B; Brennan ML; Sun M; Goormastic M; Settle M; Schmitt D; Fu X; Thomson L; Fox PL; Ischiropoulos H; Smith JD; Kinter M; Hazen SL
    J Clin Invest; 2004 Aug; 114(4):529-41. PubMed ID: 15314690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myeloperoxidase-derived chlorinating species induce protein carbamylation through decomposition of thiocyanate and urea: novel pathways generating dysfunctional high-density lipoprotein.
    Holzer M; Zangger K; El-Gamal D; Binder V; Curcic S; Konya V; Schuligoi R; Heinemann A; Marsche G
    Antioxid Redox Signal; 2012 Oct; 17(8):1043-52. PubMed ID: 22462773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myeloperoxidase-derived oxidants modify apolipoprotein A-I and generate dysfunctional high-density lipoproteins: comparison of hypothiocyanous acid (HOSCN) with hypochlorous acid (HOCl).
    Hadfield KA; Pattison DI; Brown BE; Hou L; Rye KA; Davies MJ; Hawkins CL
    Biochem J; 2013 Jan; 449(2):531-42. PubMed ID: 23088652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myeloperoxidase Targets Apolipoprotein A-I for Site-Specific Tyrosine Chlorination in Atherosclerotic Lesions and Generates Dysfunctional High-Density Lipoprotein.
    Jin Z; Zhou L; Tian R; Lu N
    Chem Res Toxicol; 2021 Jun; 34(6):1672-1680. PubMed ID: 33861588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myeloperoxidase targets apolipoprotein A-I, the major high density lipoprotein protein, for site-specific oxidation in human atherosclerotic lesions.
    Shao B; Pennathur S; Heinecke JW
    J Biol Chem; 2012 Feb; 287(9):6375-86. PubMed ID: 22219194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein carbamylation links inflammation, smoking, uremia and atherogenesis.
    Wang Z; Nicholls SJ; Rodriguez ER; Kummu O; Hörkkö S; Barnard J; Reynolds WF; Topol EJ; DiDonato JA; Hazen SL
    Nat Med; 2007 Oct; 13(10):1176-84. PubMed ID: 17828273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myeloperoxidase impairs ABCA1-dependent cholesterol efflux through methionine oxidation and site-specific tyrosine chlorination of apolipoprotein A-I.
    Shao B; Oda MN; Bergt C; Fu X; Green PS; Brot N; Oram JF; Heinecke JW
    J Biol Chem; 2006 Apr; 281(14):9001-4. PubMed ID: 16497665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein carbamylation and cardiovascular disease.
    Verbrugge FH; Tang WH; Hazen SL
    Kidney Int; 2015 Sep; 88(3):474-8. PubMed ID: 26061545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myeloperoxidase-mediated Methionine Oxidation Promotes an Amyloidogenic Outcome for Apolipoprotein A-I.
    Chan GK; Witkowski A; Gantz DL; Zhang TO; Zanni MT; Jayaraman S; Cavigiolio G
    J Biol Chem; 2015 Apr; 290(17):10958-71. PubMed ID: 25759391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of native and myeloperoxidase-modified apolipoprotein a-I on reverse cholesterol transport and atherosclerosis in mice.
    Hewing B; Parathath S; Barrett T; Chung WK; Astudillo YM; Hamada T; Ramkhelawon B; Tallant TC; Yusufishaq MS; Didonato JA; Huang Y; Buffa J; Berisha SZ; Smith JD; Hazen SL; Fisher EA
    Arterioscler Thromb Vasc Biol; 2014 Apr; 34(4):779-89. PubMed ID: 24407029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acrolein impairs ATP binding cassette transporter A1-dependent cholesterol export from cells through site-specific modification of apolipoprotein A-I.
    Shao B; Fu X; McDonald TO; Green PS; Uchida K; O'Brien KD; Oram JF; Heinecke JW
    J Biol Chem; 2005 Oct; 280(43):36386-96. PubMed ID: 16126721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific oxidation of apolipoprotein A-I impairs cholesterol export by ABCA1, a key cardioprotective function of HDL.
    Shao B
    Biochim Biophys Acta; 2012 Mar; 1821(3):490-501. PubMed ID: 22178192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific 5-hydroxytryptophan incorporation into apolipoprotein A-I impairs cholesterol efflux activity and high-density lipoprotein biogenesis.
    Zamanian-Daryoush M; Gogonea V; DiDonato AJ; Buffa JA; Choucair I; Levison BS; Hughes RA; Ellington AD; Huang Y; Li XS; DiDonato JA; Hazen SL
    J Biol Chem; 2020 Apr; 295(15):4836-4848. PubMed ID: 32098873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific nitration of apolipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional.
    DiDonato JA; Aulak K; Huang Y; Wagner M; Gerstenecker G; Topbas C; Gogonea V; DiDonato AJ; Tang WHW; Mehl RA; Fox PL; Plow EF; Smith JD; Fisher EA; Hazen SL
    J Biol Chem; 2014 Apr; 289(15):10276-10292. PubMed ID: 24558038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Could ornithine supplementation be beneficial to prevent the formation of pro-atherogenic carbamylated low-density lipoprotein (c-LDL) particles?
    Simsek B; Çakatay U
    Med Hypotheses; 2019 May; 126():20-22. PubMed ID: 31010493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myeloperoxidase-mediated oxidation targets serum apolipoprotein A-I in diabetic patients and represents a potential mechanism leading to impaired anti-apoptotic activity of high density lipoprotein.
    Lu N; Xie S; Li J; Tian R; Peng YY
    Clin Chim Acta; 2015 Feb; 441():163-70. PubMed ID: 25528002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysine glycation of apolipoprotein A-I impairs its anti-inflammatory function in type 2 diabetes mellitus.
    Liu D; Ji L; Zhao M; Wang Y; Guo Y; Li L; Zhang D; Xu L; Pan B; Su J; Xiang S; Pennathur S; Li J; Gao J; Liu P; Willard B; Zheng L
    J Mol Cell Cardiol; 2018 Sep; 122():47-57. PubMed ID: 30092227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.