These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 35304143)
1. Hormetic dose-response of halogenated organic pollutants on Microcystis aeruginosa: Joint toxic action and mechanism. Zhang Y; Gao Q; Liu SS; Tang L; Li XG; Sun H Sci Total Environ; 2022 Jul; 829():154581. PubMed ID: 35304143 [TBL] [Abstract][Full Text] [Related]
2. Biphasic effects of typical chlorinated organophosphorus flame retardants on Microcystis aeruginosa. Zhang X; Ai S; Wei J; Yang X; Huang Y; Hu J; Wang Q; Wang H Ecotoxicol Environ Saf; 2022 Aug; 241():113813. PubMed ID: 36068742 [TBL] [Abstract][Full Text] [Related]
3. Combined effects of fluoroquinolone antibiotics and organophosphate flame retardants on Microcystis aeruginosa. Zhao Y; Huang Y; Hu S; Xu T; Fang Y; Liu H; Xi Y; Qu R Environ Sci Pollut Res Int; 2023 Apr; 30(18):53050-53062. PubMed ID: 36853534 [TBL] [Abstract][Full Text] [Related]
4. Dosage impact of submerged plants extracts on Microcystis aeruginosa growth: From hormesis to inhibition. Li X; Zhao W; Chen J; Wang F Ecotoxicol Environ Saf; 2023 Dec; 268():115703. PubMed ID: 37979364 [TBL] [Abstract][Full Text] [Related]
5. The sensitivity of multiple ecotoxicological assays for evaluating Microcystis aeruginosa cellular algal organic matter and contribution of cyanotoxins to the toxicity. Šrédlová K; Šilhavecká S; Linhartová L; Semerád J; Michalíková K; Pivokonský M; Cajthaml T Toxicon; 2021 May; 195():69-77. PubMed ID: 33711366 [TBL] [Abstract][Full Text] [Related]
6. Allelopathic effect of pyrogallic acid on cyanobacterium Microcystis aeruginosa: The regulatory role of nitric oxide and its significance for controlling harmful algal blooms (HABs). He Y; Zhou Y; Zhou Z; He J; Liu Y; Xiao Y; Long L; Deng O; Xiao H; Shen F; Deng S; Luo L Sci Total Environ; 2023 Feb; 858(Pt 1):159785. PubMed ID: 36309262 [TBL] [Abstract][Full Text] [Related]
7. Effects of nonylphenol on the growth and microcystin production of Microcystis strains. Wang J; Xie P; Guo N Environ Res; 2007 Jan; 103(1):70-8. PubMed ID: 16831412 [TBL] [Abstract][Full Text] [Related]
8. A trigger mechanism of herbicides to phytoplankton blooms: From the standpoint of hormesis involving cytochrome b Zhang Y; Calabrese EJ; Zhang J; Gao D; Qin M; Lin Z Water Res; 2020 Apr; 173():115584. PubMed ID: 32062224 [TBL] [Abstract][Full Text] [Related]
9. Combined effects of toxic Microcystis aeruginosa and high pH on antioxidant responses, immune responses, and apoptosis of the edible freshwater bivalve Corbicula fluminea. Zhang J; Wang N; Zhang Z; Gao Y; Dong J; Gao X; Yuan H; Li X Ecotoxicol Environ Saf; 2024 Jul; 280():116568. PubMed ID: 38850693 [TBL] [Abstract][Full Text] [Related]
10. Combined effects of toxic Microcystis aeruginosa and hypoxia on the digestive enzyme activities of the triangle sail mussel Hyriopsis cumingii. Gu H; Hu M; Wei S; Kong H; Huang X; Bao Y; Wang Y Aquat Toxicol; 2019 Jul; 212():241-246. PubMed ID: 31150951 [TBL] [Abstract][Full Text] [Related]
11. Cyanobacterium Microcystis aeruginosa response to pentachlorophenol and comparison with that of the microalga Chlorella vulgaris. de Morais P; Stoichev T; Basto MC; Ramos V; Vasconcelos VM; Vasconcelos MT Water Res; 2014 Apr; 52():63-72. PubMed ID: 24462928 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms for the stimulatory effects of a five-component mixture of antibiotics in Microcystis aeruginosa at transcriptomic and proteomic levels. Jiang Y; Liu Y; Zhang J J Hazard Mater; 2021 Mar; 406():124722. PubMed ID: 33296757 [TBL] [Abstract][Full Text] [Related]
13. Multiple-species hormetic phenomena induced by indole: A case study on the toxicity of indole to bacteria, algae and human cells. Sun H; Zheng M; Song J; Huang S; Pan Y; Gong R; Lin Z Sci Total Environ; 2019 Mar; 657():46-55. PubMed ID: 30530218 [TBL] [Abstract][Full Text] [Related]
14. Time-dependent hormetic effects of polypeptide antibiotics and two antibacterial agents contribute to time-dependent cross-phenomena of their binary mixtures. Sun H; Zhang Y; Wang J; Ren LF; Tong D; Wang J; Tang L Sci Total Environ; 2023 Sep; 892():164343. PubMed ID: 37244607 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and high pH. Liu Y; Li L; Zheng L; Fu P; Wang Y; Nguyen H; Shen X; Sui Y Chemosphere; 2020 Mar; 243():125241. PubMed ID: 31995860 [TBL] [Abstract][Full Text] [Related]
16. Effects of phosphorus availability and phosphorus utilization behavior of Microcystis aeruginosa on its adaptation capability to ultraviolet radiation. Ren L; Wang P; Wang C; Paerl HW; Wang H Environ Pollut; 2020 Jan; 256():113441. PubMed ID: 31672370 [TBL] [Abstract][Full Text] [Related]
17. Are interactive effects of harmful algal blooms and copper pollution a concern for water quality management? Hochmuth JD; Asselman J; De Schamphelaere KAC Water Res; 2014 Sep; 60():41-53. PubMed ID: 24821194 [TBL] [Abstract][Full Text] [Related]
18. Integrated physiological and metabolomic analysis reveals new insights into toxicity pathways of paraquat to Microcystis aeruginosa. Bai F; Gao G; Li T; Liu J; Li L; Jia Y; Song L Aquat Toxicol; 2023 Jun; 259():106521. PubMed ID: 37061422 [TBL] [Abstract][Full Text] [Related]
19. Multistressor negative effects on an experimental phytoplankton community. The case of glyphosate and one toxigenic cyanobacterium on Chlorophycean microalgae. Hernández-García CI; Martínez-Jerónimo F Sci Total Environ; 2020 May; 717():137186. PubMed ID: 32084686 [TBL] [Abstract][Full Text] [Related]
20. Phosphorus released from sediment of Dianchi Lake and its effect on growth of Microcystis aeruginosa. Liu J; Luo X; Zhang N; Wu Y Environ Sci Pollut Res Int; 2016 Aug; 23(16):16321-8. PubMed ID: 27155834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]