These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 353043)

  • 1. 2'-Versus 3'-OH specificity in tRNA aminoacylation. Further support for the "secondary cognition" proposal.
    Alford B; Hecht SM
    J Biol Chem; 1978 Jul; 253(14):4844-50. PubMed ID: 353043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs.
    Chinault AC; Tan KH; Hassur SM; Hecht SM
    Biochemistry; 1977 Feb; 16(4):766-76. PubMed ID: 319826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer RNA control of the activation of isomeric tRNATrp's.
    Alford BL; Hecht SM
    J Biol Chem; 1979 Aug; 254(15):6873-5. PubMed ID: 378993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Position of aminoacylation of individual Escherichia coli and yeast tRNAs.
    Hecht SM; Chinualt AC
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):405-9. PubMed ID: 1108023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of positional specificity in the aminoacylation of Escherichia coli tRNAGly.
    Ehrenfeld GM; Francis TA; Hecht SM
    J Biol Chem; 1983 Oct; 258(19):11745-50. PubMed ID: 6352702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of Escherichia coli glutaminyl-tRNA synthesis with noncognate tRNA's.
    Seno T; Nakamura A; Fukuhara S; Iwata K
    Nucleic Acids Res; 1978 May; 5(5):1561-70. PubMed ID: 351566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Both positional isomers of aminoacyl-tRNA's are bound by elongation factor Tu.
    Alford BL; Pezzuto JM; Tan KH; Hecht SM
    J Biol Chem; 1979 Aug; 254(15):6894-903. PubMed ID: 378996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unilateral aminoacylation specificity between bovine mitochondria and eubacteria.
    Kumazawa Y; Himeno H; Miura K; Watanabe K
    J Biochem; 1991 Mar; 109(3):421-7. PubMed ID: 1880129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of discrimination between cognate and non-cognate tRNAs by phenylalanyl-tRNA synthetase from yeast.
    Krauss G; Riesner D; Maass G
    Eur J Biochem; 1976 Sep; 68(1):81-93. PubMed ID: 9288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc(II)-dependent synthesis of diadenosine 5', 5"' -P(1) ,P(4) -tetraphosphate by Escherichia coli and yeast phenylalanyl transfer ribonucleic acid synthetases.
    Plateau P; Mayaux JF; Blanquet S
    Biochemistry; 1981 Aug; 20(16):4654-62. PubMed ID: 7028092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isomeric phenylalanyl-tRNAs. Position of the aminoacyl moiety during protein biosynthesis.
    Hecht SM; Kozarich JW; Schmidt FJ
    Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4317-21. PubMed ID: 4612516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equivalent and non-equivalent binding sites for tRNA on aminoacyl-tRNA synthetases.
    Krauss G; Pingoud A; Boehme D; Riesner D; Peters F; Maas G
    Eur J Biochem; 1975 Jul; 55(3):517-29. PubMed ID: 1100384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenylalanyl-tRNA, lysyl-tRNA, isoleucyl-tRNA and arginyl-tRNA synthetases. Substrate specificity in the ATP/PPi exchange with regard to ATP analogs.
    Freist W; Cramer F
    Eur J Biochem; 1980; 107(1):47-50. PubMed ID: 6995115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single base substitution in the variable pocket of yeast tRNA(Arg) eliminates species-specific aminoacylation.
    Liu W; Huang Y; Eriani G; Gangloff J; Wang E; Wang Y
    Biochim Biophys Acta; 1999 Dec; 1473(2-3):356-62. PubMed ID: 10594373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrrolysyl-tRNA synthetase variants reveal ancestral aminoacylation function.
    Ko JH; Wang YS; Nakamura A; Guo LT; Söll D; Umehara T
    FEBS Lett; 2013 Oct; 587(19):3243-8. PubMed ID: 23994531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and aminoacylation of 3'-amino-3'-deoxy transfer RNA and its activity in ribosomal protein synthesis.
    Fraser TH; Rich A
    Proc Natl Acad Sci U S A; 1973 Sep; 70(9):2671-5. PubMed ID: 4582194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Archaebacterial phenylalanyl-tRNA synthetase. Accuracy of the phenylalanyl-tRNA synthetase from the archaebacterium Methanosarcina barkeri, Zn(II)-dependent synthesis of diadenosine 5',5'''-P1,P4-tetraphosphate, and immunological relationship of OFFnylalanyl-tRNA synthetases from different urkingdoms.
    Rauhut R; Gabius HJ; Engelhardt R; Cramer F
    J Biol Chem; 1985 Jan; 260(1):182-7. PubMed ID: 3880738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenylalanyl-tRNA synthetase of Escherichia coli K 10. Multiple enzyme-aminoacyl-tRNA complexes as a consequence of substrate specificity.
    Güntner C; Holler E
    Biochemistry; 1979 May; 18(10):2028-38. PubMed ID: 373798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific interaction of anticodon loop residues with yeast phenylalanyl-tRNA synthetase.
    Bruce AG; Uhlenbeck OC
    Biochemistry; 1982 Aug; 21(17):3921-6. PubMed ID: 6751381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticodon recognition in evolution: switching tRNA specificity of an aminoacyl-tRNA synthetase by site-directed peptide transplantation.
    Brevet A; Chen J; Commans S; Lazennec C; Blanquet S; Plateau P
    J Biol Chem; 2003 Aug; 278(33):30927-35. PubMed ID: 12766171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.