These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 35304659)
1. Gyrotactic cluster formation of bottom-heavy squirmers. Rühle F; Zantop AW; Stark H Eur Phys J E Soft Matter; 2022 Mar; 45(3):26. PubMed ID: 35304659 [TBL] [Abstract][Full Text] [Related]
2. Emergent collective dynamics of bottom-heavy squirmers under gravity. Rühle F; Stark H Eur Phys J E Soft Matter; 2020 May; 43(5):26. PubMed ID: 32445113 [TBL] [Abstract][Full Text] [Related]
3. Hydrodynamic interaction of microswimmers near a wall. Li GJ; Ardekani AM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013010. PubMed ID: 25122372 [TBL] [Abstract][Full Text] [Related]
4. Collective sedimentation of squirmers under gravity. Kuhr JT; Blaschke J; Rühle F; Stark H Soft Matter; 2017 Oct; 13(41):7548-7555. PubMed ID: 28967939 [TBL] [Abstract][Full Text] [Related]
5. Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement. Zöttl A; Stark H Phys Rev Lett; 2014 Mar; 112(11):118101. PubMed ID: 24702421 [TBL] [Abstract][Full Text] [Related]
7. Mesoscale simulations of hydrodynamic squirmer interactions. Götze IO; Gompper G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327 [TBL] [Abstract][Full Text] [Related]
8. Hydrodynamic interactions between squirmers near walls: far-field dynamics and near-field cluster stability. Théry A; Maaß CC; Lauga E R Soc Open Sci; 2023 Jun; 10(6):230223. PubMed ID: 37388310 [TBL] [Abstract][Full Text] [Related]
9. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls. Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374 [TBL] [Abstract][Full Text] [Related]
10. Collective dynamics in a monolayer of squirmers confined to a boundary by gravity. Kuhr JT; Rühle F; Stark H Soft Matter; 2019 Jul; 15(28):5685-5694. PubMed ID: 31246219 [TBL] [Abstract][Full Text] [Related]
11. Clustering of microswimmers: interplay of shape and hydrodynamics. Theers M; Westphal E; Qi K; Winkler RG; Gompper G Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172 [TBL] [Abstract][Full Text] [Related]
12. Direct numerical simulations of a microswimmer in a viscoelastic fluid. Kobayashi T; Jung G; Matsuoka Y; Nakayama Y; Molina JJ; Yamamoto R Soft Matter; 2023 Sep; 19(37):7109-7121. PubMed ID: 37694444 [TBL] [Abstract][Full Text] [Related]
13. Fluid particle diffusion in a semidilute suspension of model micro-organisms. Ishikawa T; Locsei JT; Pedley TJ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021408. PubMed ID: 20866810 [TBL] [Abstract][Full Text] [Related]
14. Swimming Mode of Two Interacting Squirmers under Gravity in a Narrow Vertical Channel. Guan G; Lin J; Nie D Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359654 [TBL] [Abstract][Full Text] [Related]
15. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions. Alarcón F; Valeriani C; Pagonabarraga I Soft Matter; 2017 Jan; 13(4):814-826. PubMed ID: 28066850 [TBL] [Abstract][Full Text] [Related]
16. Hydrodynamics Defines the Stable Swimming Direction of Spherical Squirmers in a Nematic Liquid Crystal. Lintuvuori JS; Würger A; Stratford K Phys Rev Lett; 2017 Aug; 119(6):068001. PubMed ID: 28949617 [TBL] [Abstract][Full Text] [Related]
17. Stability of a Dumbbell Micro-Swimmer. Ishikawa T Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621046 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of a chiral swimmer sedimenting on a flat plate. Fadda F; Molina JJ; Yamamoto R Phys Rev E; 2020 May; 101(5-1):052608. PubMed ID: 32575256 [TBL] [Abstract][Full Text] [Related]
19. Collective behavior of squirmers in thin films. Wu-Zhang B; Fedosov DA; Gompper G Soft Matter; 2024 Jul; 20(29):5687-5702. PubMed ID: 38639062 [TBL] [Abstract][Full Text] [Related]