These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35304809)

  • 1. Accuracy of retention model parameters obtained from retention data in liquid chromatography.
    Brau T; Pirok B; Rutan S; Stoll D
    J Sep Sci; 2022 Sep; 45(17):3241-3255. PubMed ID: 35304809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental design and re-parameterization of the Neue-Kuss model for accurate and precise prediction of isocratic retention factors from gradient measurements in reversed phase liquid chromatography.
    Rutan SC; Cash K; Stoll DR
    J Chromatogr A; 2023 Nov; 1711():464443. PubMed ID: 37890376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applicability of linear and nonlinear retention-time models for reversed-phase liquid chromatography separations of small molecules, peptides, and intact proteins.
    Tyteca E; De Vos J; Vankova N; Cesla P; Desmet G; Eeltink S
    J Sep Sci; 2016 Apr; 39(7):1249-57. PubMed ID: 26829155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Q-learning for the selection of optimal isocratic scouting runs in liquid chromatography.
    Kensert A; Collaerts G; Efthymiadis K; Desmet G; Cabooter D
    J Chromatogr A; 2021 Feb; 1638():461900. PubMed ID: 33485027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A perspective on the use of deep deterministic policy gradient reinforcement learning for retention time modeling in reversed-phase liquid chromatography.
    Kensert A; Desmet G; Cabooter D
    J Chromatogr A; 2024 Jan; 1713():464570. PubMed ID: 38101304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy.
    Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG
    J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utility of linear and nonlinear models for retention prediction in liquid chromatography.
    Gilar M; Hill J; McDonald TS; Gritti F
    J Chromatogr A; 2020 Feb; 1613():460690. PubMed ID: 31727355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the behaviour of polydisperse polymers in liquid chromatography under isocratic and gradient conditions.
    Schoenmakers P; Fitzpatrick F; Grothey R
    J Chromatogr A; 2002 Aug; 965(1-2):93-107. PubMed ID: 12236541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed form approximations to predict retention times and peak widths in gradient elution under conditions of sample volume overload and sample solvent mismatch.
    Rutan SC; Jeong LN; Carr PW; Stoll DR; Weber SG
    J Chromatogr A; 2021 Sep; 1653():462376. PubMed ID: 34293516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approaches to model the retention and peak profile in linear gradient reversed-phase liquid chromatography.
    Baeza-Baeza JJ; Ortiz-Bolsico C; Torres-Lapasió JR; García-Álvarez-Coque MC
    J Chromatogr A; 2013 Apr; 1284():28-35. PubMed ID: 23453677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins.
    Jandera P; Kučerová Z; Urban J
    J Chromatogr A; 2011 Dec; 1218(49):8874-89. PubMed ID: 21742334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benefits of solvent concentration pulses in retention time modelling of liquid chromatography.
    Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2019 Jul; 1597():76-88. PubMed ID: 30902430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing experimental designs in liquid chromatography (I): Development and validation of a method for the comprehensive inspection of experimental designs.
    Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Aug; 1624():461180. PubMed ID: 32540058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention models for isocratic and gradient elution in reversed-phase liquid chromatography.
    Nikitas P; Pappa-Louisi A
    J Chromatogr A; 2009 Mar; 1216(10):1737-55. PubMed ID: 18838140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an ion chromatographic gradient retention model from isocratic elution experiments.
    Bolanca T; Cerjan-Stefanović S; Lusa M; Rogosić M; Ukić S
    J Chromatogr A; 2006 Jul; 1121(2):228-35. PubMed ID: 16698028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error analysis and performance of different retention models in the transference of data from/to isocratic/gradient elution.
    Vivó-Truyols G; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2003 Nov; 1018(2):169-81. PubMed ID: 14620568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversed-phase liquid chromatography of the opioid peptides--2. Quantitative structure-retention relationships and isocratic retention prediction.
    Dave K; Stobaugh JF; Riley CM
    J Pharm Biomed Anal; 1992 Jan; 10(1):49-60. PubMed ID: 1391083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review.
    Jandera P; Hájek T
    J Sep Sci; 2018 Jan; 41(1):145-162. PubMed ID: 29072360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast estimation of adsorption isotherm parameters in gradient elution preparative liquid chromatography. I: the single component case.
    Åsberg D; Leśko M; Enmark M; Samuelsson J; Kaczmarski K; Fornstedt T
    J Chromatogr A; 2013 Jul; 1299():64-70. PubMed ID: 23769206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instrument parameters controlling retention precision in gradient elution reversed-phase liquid.
    Beyaza A; Fana W; Carr PW; Schellinger AP
    J Chromatogr A; 2014 Dec; 1371():90-105. PubMed ID: 25459648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.