These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35304973)

  • 21. Effective squirmer models for self-phoretic chemically active spherical colloids.
    Popescu MN; Uspal WE; Eskandari Z; Tasinkevych M; Dietrich S
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):145. PubMed ID: 30569319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upstream Rheotaxis of Catalytic Janus Spheres.
    Sharan P; Xiao Z; Mancuso V; Uspal WE; Simmchen J
    ACS Nano; 2022 Mar; 16(3):4599-4608. PubMed ID: 35230094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of angular momentum conservation on hydrodynamic simulations of colloids.
    Yang M; Theers M; Hu J; Gompper G; Winkler RG; Ripoll M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013301. PubMed ID: 26274301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directed Flow of Micromotors through Alignment Interactions with Micropatterned Ratchets.
    Katuri J; Caballero D; Voituriez R; Samitier J; Sanchez S
    ACS Nano; 2018 Jul; 12(7):7282-7291. PubMed ID: 29949338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions in active colloids.
    Liebchen B; Mukhopadhyay AK
    J Phys Condens Matter; 2021 Dec; 34(8):. PubMed ID: 34788232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coarsening dynamics of binary liquids with active rotation.
    Sabrina S; Spellings M; Glotzer SC; Bishop KJ
    Soft Matter; 2015 Nov; 11(43):8409-16. PubMed ID: 26345231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial Chemotaxis of Self-Phoretic Active Colloids: Collective Behavior.
    Stark H
    Acc Chem Res; 2018 Nov; 51(11):2681-2688. PubMed ID: 30346724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-induced polar order of active Brownian particles in a harmonic trap.
    Hennes M; Wolff K; Stark H
    Phys Rev Lett; 2014 Jun; 112(23):238104. PubMed ID: 24972231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unravelling the role of phoretic and hydrodynamic interactions in active colloidal suspensions.
    Scagliarini A; Pagonabarraga I
    Soft Matter; 2020 Oct; 16(38):8893-8903. PubMed ID: 32895692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical micromotors self-assemble and self-propel by spontaneous symmetry breaking.
    Yu T; Chuphal P; Thakur S; Reigh SY; Singh DP; Fischer P
    Chem Commun (Camb); 2018 Oct; 54(84):11933-11936. PubMed ID: 30285014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visible Light Actuated Efficient Exclusion Between Plasmonic Ag/AgCl Micromotors and Passive Beads.
    Wang X; Baraban L; Misko VR; Nori F; Huang T; Cuniberti G; Fassbender J; Makarov D
    Small; 2018 Nov; 14(44):e1802537. PubMed ID: 30238700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-Equilibrium Assembly of Light-Activated Colloidal Mixtures.
    Singh DP; Choudhury U; Fischer P; Mark AG
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28632337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How colloid-colloid interactions and hydrodynamic effects influence the percolation threshold: A simulation study in alumina suspensions.
    Laganapan AM; Mouas M; Videcoq A; Cerbelaud M; Bienia M; Bowen P; Ferrando R
    J Colloid Interface Sci; 2015 Nov; 458():241-6. PubMed ID: 26232284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic Chemotaxis and Collective Behavior in Active Matter.
    Liebchen B; Löwen H
    Acc Chem Res; 2018 Dec; 51(12):2982-2990. PubMed ID: 30375857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement.
    Zöttl A; Stark H
    Phys Rev Lett; 2014 Mar; 112(11):118101. PubMed ID: 24702421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrodynamic simulations of self-phoretic microswimmers.
    Yang M; Wysocki A; Ripoll M
    Soft Matter; 2014 Sep; 10(33):6208-18. PubMed ID: 25012361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Charged Nanoparticles Quench the Propulsion of Active Janus Colloids.
    Issa MW; Baumgartner NR; Kalil MA; Ryan SD; Wirth CL
    ACS Omega; 2019 Aug; 4(8):13034-13041. PubMed ID: 31460430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media.
    Torkzaban S; Bradford SA; Walker SL
    Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-propulsion against a moving membrane: Enhanced accumulation and drag force.
    Marini Bettolo Marconi U; Sarracino A; Maggi C; Puglisi A
    Phys Rev E; 2017 Sep; 96(3-1):032601. PubMed ID: 29347004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ionic Effects in Ionic Diffusiophoresis in Chemically Driven Active Colloids.
    Zhou X; Wang S; Xian L; Shah ZH; Li Y; Lin G; Gao Y
    Phys Rev Lett; 2021 Oct; 127(16):168001. PubMed ID: 34723584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.