These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 35305010)

  • 1. A review on antimicrobial peptides databases and the computational tools.
    Ramazi S; Mohammadi N; Allahverdi A; Khalili E; Abdolmaleki P
    Database (Oxford); 2022 Mar; 2022():. PubMed ID: 35305010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Overview of Databases and Bioinformatics Tools for Plant Antimicrobial Peptides.
    Quintans ILADCR; de Araújo JVA; Rocha LNM; de Andrade AEB; do Rêgo TG; Deyholos MK
    Curr Protein Pept Sci; 2022; 23(1):6-19. PubMed ID: 34951361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CAMPR4: a database of natural and synthetic antimicrobial peptides.
    Gawde U; Chakraborty S; Waghu FH; Barai RS; Khanderkar A; Indraguru R; Shirsat T; Idicula-Thomas S
    Nucleic Acids Res; 2023 Jan; 51(D1):D377-D383. PubMed ID: 36370097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational resources and tools for antimicrobial peptides.
    Liu S; Fan L; Sun J; Lao X; Zheng H
    J Pept Sci; 2017 Jan; 23(1):4-12. PubMed ID: 27966278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.
    Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs.
    Lertampaiporn S; Vorapreeda T; Hongsthong A; Thammarongtham C
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33494403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial Peptides: An Update on Classifications and Databases.
    Bin Hafeez A; Jiang X; Bergen PJ; Zhu Y
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The antimicrobial peptide database is 20 years old: Recent developments and future directions.
    Wang G
    Protein Sci; 2023 Oct; 32(10):e4778. PubMed ID: 37695921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the arsenal of antimicrobial peptides: Mechanisms, diversity, and applications.
    Savitskaya A; Masso-Silva J; Haddaoui I; Enany S
    Biochimie; 2023 Nov; 214(Pt B):216-227. PubMed ID: 37499896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides.
    Medina-Ortiz D; Contreras S; Fernández D; Soto-García N; Moya I; Cabas-Mora G; Olivera-Nappa Á
    Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target-AMP: Computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile.
    Jan A; Hayat M; Wedyan M; Alturki R; Gazzawe F; Ali H; Alarfaj FK
    Comput Biol Med; 2022 Dec; 151(Pt A):106311. PubMed ID: 36410097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tools in the Era of Multidrug Resistance in Bacteria: Applications for New Antimicrobial Peptides Discovery.
    Moretta A; Scieuzo C; Salvia R; Popović ŽD; Sgambato A; Falabella P
    Curr Pharm Des; 2022; 28(35):2856-2866. PubMed ID: 35980058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.
    Erdem Büyükkiraz M; Kesmen Z
    J Appl Microbiol; 2022 Mar; 132(3):1573-1596. PubMed ID: 34606679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of free energy landscapes as a strategy for the design of antimicrobial peptides.
    Hassan SA; Steinbach PJ
    J Biol Phys; 2022 Jun; 48(2):151-166. PubMed ID: 35419659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides.
    Xu J; Li F; Leier A; Xiang D; Shen HH; Marquez Lago TT; Li J; Yu DJ; Song J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33774670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial peptides recognition using weighted physicochemical property encoding.
    Na S; Wannigama DL; Saethang T
    J Bioinform Comput Biol; 2023 Apr; 21(2):2350006. PubMed ID: 37120707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms.
    Chung CR; Jhong JH; Wang Z; Chen S; Wan Y; Horng JT; Lee TY
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of machine learning algorithms on the microbial strain-specific AMP prediction.
    Vishnepolsky B; Grigolava M; Managadze G; Gabrielian A; Rosenthal A; Hurt DE; Tartakovsky M; Pirtskhalava M
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35724561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane targeting cationic antimicrobial peptides.
    Ciumac D; Gong H; Hu X; Lu JR
    J Colloid Interface Sci; 2019 Mar; 537():163-185. PubMed ID: 30439615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.