These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35305082)

  • 61. Prevascularized microtemplated fibrin scaffolds for cardiac tissue engineering applications.
    Thomson KS; Korte FS; Giachelli CM; Ratner BD; Regnier M; Scatena M
    Tissue Eng Part A; 2013 Apr; 19(7-8):967-77. PubMed ID: 23317311
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Preservation of conductive propagation after surgical repair of cardiac defects with a bio-engineered conductive patch.
    He S; Song H; Wu J; Li SH; Weisel RD; Sung HW; Li J; Li RK
    J Heart Lung Transplant; 2018 Jul; 37(7):912-924. PubMed ID: 29397284
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues.
    Fleischer S; Shevach M; Feiner R; Dvir T
    Nanoscale; 2014 Aug; 6(16):9410-4. PubMed ID: 24744098
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Engineering human ventricular heart tissue based on macroporous iron oxide scaffolds.
    Yang H; Wei L; Liu C; Zhong W; Li B; Chen Y; Han R; Zhuang J; Qu J; Tao H; Chen H; Xu C; Liang Q; Lu C; Qian R; Chen S; Wang W; Sun N
    Acta Biomater; 2019 Apr; 88():540-553. PubMed ID: 30779999
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering.
    Seif-Naraghi SB; Salvatore MA; Schup-Magoffin PJ; Hu DP; Christman KL
    Tissue Eng Part A; 2010 Jun; 16(6):2017-27. PubMed ID: 20100033
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.
    Kharaziha M; Shin SR; Nikkhah M; Topkaya SN; Masoumi N; Annabi N; Dokmeci MR; Khademhosseini A
    Biomaterials; 2014 Aug; 35(26):7346-54. PubMed ID: 24927679
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Acellular Myocardial Scaffolds and Slices Fabrication, and Method for Applying Mechanical and Electrical Simulation to Tissue Construct.
    Wang B; Shah M; Williams LN; de Jongh Curry AL; Hong Y; Zhang G; Liao J
    Methods Mol Biol; 2022; 2485():55-70. PubMed ID: 35618898
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy.
    Wu Y; Wang L; Guo B; Ma PX
    ACS Nano; 2017 Jun; 11(6):5646-5659. PubMed ID: 28590127
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Functional consequences of a tissue-engineered myocardial patch for cardiac repair in a rat infarct model.
    Wendel JS; Ye L; Zhang P; Tranquillo RT; Zhang JJ
    Tissue Eng Part A; 2014 Apr; 20(7-8):1325-35. PubMed ID: 24295499
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Conductive carbon nanofibers incorporated into collagen bio-scaffold assists myocardial injury repair.
    Tashakori-Miyanroudi M; Rakhshan K; Ramez M; Asgarian S; Janzadeh A; Azizi Y; Seifalian A; Ramezani F
    Int J Biol Macromol; 2020 Nov; 163():1136-1146. PubMed ID: 32621929
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Simple and robust fabrication and characterization of conductive carbonized nanofibers loaded with gold nanoparticles for bone tissue engineering applications.
    Nekounam H; Allahyari Z; Gholizadeh S; Mirzaei E; Shokrgozar MA; Faridi-Majidi R
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111226. PubMed ID: 32919620
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Micropatterned conductive elastomer patch based on poly (glycerol sebacate)-graphene for cardiac tissue repair.
    Shi M; Bai L; Xu M; Li Z; Hu T; Hu J; Zhang Z; Yin Z; Guo B
    Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35235923
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Gold nanoparticle loaded hybrid nanofibers for cardiogenic differentiation of stem cells for infarcted myocardium regeneration.
    Ravichandran R; Sridhar R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S
    Macromol Biosci; 2014 Apr; 14(4):515-25. PubMed ID: 24327549
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Conductive electrospun scaffolds with electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells.
    Rahmani A; Nadri S; Kazemi HS; Mortazavi Y; Sojoodi M
    Artif Organs; 2019 Aug; 43(8):780-790. PubMed ID: 30674064
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Electromechanical characterization of a tissue-engineered myocardial patch derived from extracellular matrix.
    Ota T; Gilbert TW; Badylak SF; Schwartzman D; Zenati MA
    J Thorac Cardiovasc Surg; 2007 Apr; 133(4):979-85. PubMed ID: 17382638
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fibrin-based cardiac patch containing neuregulin-1 for heart repair after myocardial infarction.
    Chang T; Liu C; Yang H; Lu K; Han Y; Zheng Y; Huang H; Wu Y; Song Y; Yu Q; Shen Z; Jiang T; Zhang Y
    Colloids Surf B Biointerfaces; 2022 Dec; 220():112936. PubMed ID: 36265312
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Conductive biomaterials for cardiac repair: A review.
    Li Y; Wei L; Lan L; Gao Y; Zhang Q; Dawit H; Mao J; Guo L; Shen L; Wang L
    Acta Biomater; 2022 Feb; 139():157-178. PubMed ID: 33887448
    [TBL] [Abstract][Full Text] [Related]  

  • 78. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair.
    Jang J; Park HJ; Kim SW; Kim H; Park JY; Na SJ; Kim HJ; Park MN; Choi SH; Park SH; Kim SW; Kwon SM; Kim PJ; Cho DW
    Biomaterials; 2017 Jan; 112():264-274. PubMed ID: 27770630
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Injectable chitosan/κ-carrageenan hydrogel designed with au nanoparticles: A conductive scaffold for tissue engineering demands.
    Pourjavadi A; Doroudian M; Ahadpour A; Azari S
    Int J Biol Macromol; 2019 Apr; 126():310-317. PubMed ID: 30502431
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression.
    You JO; Rafat M; Ye GJ; Auguste DT
    Nano Lett; 2011 Sep; 11(9):3643-8. PubMed ID: 21800912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.