These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35305273)

  • 1. Enhancing signals of microfluidic impedance cytometry through optimization of microelectrode array.
    Zhou C; Shen H; Feng H; Yan Z; Ji B; Yuan X; Zhang R; Chang H
    Electrophoresis; 2022 Nov; 43(21-22):2156-2164. PubMed ID: 35305273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating Cell-Particle Conjugate Orientations in a Microfluidic Channel to Ameliorate Impedance-based Signal Acquisition and Detection
    Ashley BK; Mukerji I; Hassan U
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7233-7236. PubMed ID: 34892768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes.
    Zhong J; Liang M; Ai Y
    Lab Chip; 2021 Aug; 21(15):2869-2880. PubMed ID: 34236057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An adaptive three-dimensional hydrodynamic focusing microfluidic impedance flow cytometer.
    Zhou Y; Wang J; Liu T; Wu M; Lan Y; Jia C; Zhao J
    Analyst; 2023 Jul; 148(14):3239-3246. PubMed ID: 37341575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations.
    Zhu S; Zhang X; Zhou Z; Han Y; Xiang N; Ni Z
    Talanta; 2021 Oct; 233():122571. PubMed ID: 34215067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-domain signal averaging to improve microparticles detection and enumeration accuracy in a microfluidic impedance cytometer.
    Ashley BK; Hassan U
    Biotechnol Bioeng; 2021 Nov; 118(11):4428-4440. PubMed ID: 34370302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing Microfluidic Impedance Cytometry by Bypass Electrode Layout Design.
    Wu G; Zhang Z; Du M; Wu D; Zhou J; Hao T; Xie X
    Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria.
    Bernabini C; Holmes D; Morgan H
    Lab Chip; 2011 Feb; 11(3):407-12. PubMed ID: 21060945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double-peak signal features in microfluidic impedance flow cytometry enable sensitive measurement of cell membrane capacitance.
    Mahesh K; Varma M; Sen P
    Lab Chip; 2020 Nov; 20(22):4296-4309. PubMed ID: 33094786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry.
    Holmes D; Pettigrew D; Reccius CH; Gwyer JD; van Berkel C; Holloway J; Davies DE; Morgan H
    Lab Chip; 2009 Oct; 9(20):2881-9. PubMed ID: 19789739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping.
    Petchakup C; Yang H; Gong L; He L; Tay HM; Dalan R; Chung AJ; Li KHH; Hou HW
    Small; 2022 May; 18(18):e2104822. PubMed ID: 35253966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities.
    Daguerre H; Solsona M; Cottet J; Gauthier M; Renaud P; Bolopion A
    Lab Chip; 2020 Oct; 20(20):3665-3689. PubMed ID: 32914827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis.
    Yan S; Yuan D
    Talanta; 2021 Jan; 221():121401. PubMed ID: 33076055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review.
    Nguyen TH; Nguyen HA; Tran Thi YV; Hoang Tran D; Cao H; Chu Duc T; Bui TT; Do Quang L
    Analyst; 2023 May; 148(9):1912-1929. PubMed ID: 36928639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining Particle Size and Position in a Coplanar Electrode Setup Using Measured Opacity for Microfluidic Cytometry.
    de Bruijn DS; Jorissen KFA; Olthuis W; van den Berg A
    Biosensors (Basel); 2021 Sep; 11(10):. PubMed ID: 34677309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review on Microfluidics-Based Impedance Biosensors.
    Chen YS; Huang CH; Pai PC; Seo J; Lei KF
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervised machine learning in microfluidic impedance flow cytometry for improved particle size determination.
    de Bruijn DS; Ten Eikelder HRA; Papadimitriou VA; Olthuis W; van den Berg A
    Cytometry A; 2023 Mar; 103(3):221-226. PubMed ID: 36908134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput and label-free multi-outlet cell counting using a single pair of impedance electrodes.
    Sobahi N; Han A
    Biosens Bioelectron; 2020 Oct; 166():112458. PubMed ID: 32777724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics.
    Honrado C; Bisegna P; Swami NS; Caselli F
    Lab Chip; 2021 Jan; 21(1):22-54. PubMed ID: 33331376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cost-effective portable microfluidic impedance cytometer for broadband impedance cell analysis based on viscoelastic focusing.
    Tang D; Jiang L; Tang W; Xiang N; Ni Z
    Talanta; 2022 May; 242():123274. PubMed ID: 35144068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.