These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35305489)

  • 1. Interrogating common clarification models for unit operation systems with dynamic similitude.
    Li H; Sansalone J
    Water Res; 2022 May; 215():118265. PubMed ID: 35305489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CFD and physical models of PM separation for urban drainage hydrodynamic unit operations.
    Liu H; Sansalone J
    Water Res; 2019 May; 154():258-266. PubMed ID: 30802700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A CFD-ML augmented alternative to residence time for clarification basin scaling and design.
    Li H; Sansalone J
    Water Res; 2022 Feb; 209():117965. PubMed ID: 34953288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can a stepwise steady flow computational fluid dynamics model reproduce unsteady particulate matter separation for common unit operations?
    Pathapati SS; Sansalone JJ
    Environ Sci Technol; 2011 Jul; 45(13):5605-13. PubMed ID: 21644537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementing machine learning to optimize the cost-benefit of urban water clarifier geometrics.
    Li H; Sansalone J
    Water Res; 2022 Jul; 220():118685. PubMed ID: 35671685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods to model particulate matter clarification of unit operations subject to unsteady loadings.
    Spelman D; Sansalone JJ
    Water Res; 2017 May; 115():347-359. PubMed ID: 28314236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrete phase model representation of particulate matter (PM) for simulating PM separation by hydrodynamic unit operations.
    Dickenson JA; Sansalone JJ
    Environ Sci Technol; 2009 Nov; 43(21):8220-6. PubMed ID: 19924947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier.
    Guyonvarch E; Ramin E; Kulahci M; Plósz BG
    Water Res; 2015 Oct; 83():396-411. PubMed ID: 26248321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamics simulation improves the design and characterization of a plug-flow-type scale-down reactor for microbial cultivation processes.
    Mayer F; Cserjan-Puschmann M; Haslinger B; Shpylovyi A; Sam C; Soos M; Hahn R; Striedner G
    Biotechnol J; 2023 Jan; 18(1):e2200152. PubMed ID: 36442862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFD simulation of an unbaffled stirred tank reactor driven by a magnetic rod: assessment of turbulence models.
    Li J; Deng B; Zhang B; Shen X; Kim CN
    Water Sci Technol; 2015; 72(8):1308-18. PubMed ID: 26465300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale physical model simulation of particle filtration using computational fluid dynamics.
    Li H; Sansalone J
    J Environ Manage; 2020 Oct; 271():111021. PubMed ID: 32778302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion.
    Hurtado FJ; Kaiser AS; Zamora B
    Water Res; 2015 Mar; 71():282-93. PubMed ID: 25635665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production.
    Ding J; Wang X; Zhou XF; Ren NQ; Guo WQ
    Bioresour Technol; 2010 Sep; 101(18):7016-24. PubMed ID: 20427177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFD Investigation of the effects of bubble aerator layouts on hydrodynamics of an activated sludge channel reactor.
    Hreiz R; Potier O; Wicks J; Commenge JM
    Environ Technol; 2019 Aug; 40(20):2657-2670. PubMed ID: 29495946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drawdown of floating solids in stirred tanks: scale-up study using CFD modeling.
    Waghmare Y; Falk R; Graham L; Koganti V
    Int J Pharm; 2011 Oct; 418(2):243-53. PubMed ID: 21624447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle Image Velocimetry Used to Qualitatively Validate Computational Fluid Dynamic Simulations in an Oxygenator: A Proof of Concept.
    Schlanstein PC; Hesselmann F; Jansen SV; Gemsa J; Kaufmann TA; Klaas M; Roggenkamp D; Schröder W; Schmitz-Rode T; Steinseifer U; Arens J
    Cardiovasc Eng Technol; 2015 Sep; 6(3):340-51. PubMed ID: 26577365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detailed experimental and numerical characterization of turbulent flow in components of a water treatment plant.
    Ragessi IM; García CM; Márquez Damián S; Pozzi Piacenza C; Cantero MI
    Water Sci Technol; 2019 Dec; 80(11):2117-2130. PubMed ID: 32198329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of LES of steady transitional flow in an idealized stenosed axisymmetric artery model with a RANS transitional model.
    Tan FP; Wood NB; Tabor G; Xu XY
    J Biomech Eng; 2011 May; 133(5):051001. PubMed ID: 21599092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a hybrid lung model by combining a real geometry of the upper airways and an idealized geometry of the lower airways.
    Agujetas R; Barrio-Perotti R; Ferrera C; Pandal-Blanco A; Walters DK; Fernández-Tena A
    Comput Methods Programs Biomed; 2020 Nov; 196():105613. PubMed ID: 32593974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.