These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35306111)

  • 1. Small molecules as a source for acute kidney injury therapy.
    Feng YL; Yang Y; Chen H
    Pharmacol Ther; 2022 Sep; 237():108169. PubMed ID: 35306111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Downregulation of nesfatin-1 expression in acute kidney injury in vivo in wistar rats and in vitro in cultured cells.
    Goyal SG; Dhar A
    Life Sci; 2022 Sep; 305():120762. PubMed ID: 35787996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury.
    Duann P; Lianos EA; Ma J; Lin PH
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27153058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Astragaloside IV prevents acute kidney injury in two rodent models by inhibiting oxidative stress and apoptosis pathways.
    Gui D; Huang J; Liu W; Guo Y; Xiao W; Wang N
    Apoptosis; 2013 Apr; 18(4):409-22. PubMed ID: 23325448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deficiency of apoptosis-stimulating protein two of p53 ameliorates acute kidney injury induced by ischemia reperfusion in mice through upregulation of autophagy.
    Ji J; Zhou X; Xu P; Li Y; Shi H; Chen D; Li R; Shi H
    J Cell Mol Med; 2019 Apr; 23(4):2457-2467. PubMed ID: 30675758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The novel STING antagonist H151 ameliorates cisplatin-induced acute kidney injury and mitochondrial dysfunction.
    Gong W; Lu L; Zhou Y; Liu J; Ma H; Fu L; Huang S; Zhang Y; Zhang A; Jia Z
    Am J Physiol Renal Physiol; 2021 Apr; 320(4):F608-F616. PubMed ID: 33615891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of curcumin in the treatment of acute kidney injury: research challenges and opportunities.
    Cai Y; Huang C; Zhou M; Xu S; Xie Y; Gao S; Yang Y; Deng Z; Zhang L; Shu J; Yan T; Wan CC
    Phytomedicine; 2022 Sep; 104():154306. PubMed ID: 35809376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria as therapeutic targets in acute kidney injury.
    Hall AM; Schuh CD
    Curr Opin Nephrol Hypertens; 2016 Jul; 25(4):355-62. PubMed ID: 27166518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic dysregulation of autophagy in sepsis-induced acute kidney injury: the underlying mechanisms for renoprotection.
    Zhao S; Liao J; Shen M; Li X; Wu M
    Front Immunol; 2023; 14():1180866. PubMed ID: 37215112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc‑finger E‑box‑binding homeobox 1 alleviates acute kidney injury by activating autophagy and the AMPK/mTOR pathway.
    Sun D; Liu X; Zhu L; Zhang B
    Mol Med Rep; 2021 Jun; 23(6):. PubMed ID: 33846788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential.
    Zhang X; Agborbesong E; Li X
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapamycin induces autophagy to alleviate acute kidney injury following cerebral ischemia and reperfusion via the mTORC1/ATG13/ULK1 signaling pathway.
    Su Y; Lu J; Gong P; Chen X; Liang C; Zhang J
    Mol Med Rep; 2018 Dec; 18(6):5445-5454. PubMed ID: 30365078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapamycin attenuates mitochondrial injury and renal tubular cell apoptosis in experimental contrast-induced acute kidney injury in rats.
    Yang X; Yan X; Yang D; Zhou J; Song J; Yang D
    Biosci Rep; 2018 Dec; 38(6):. PubMed ID: 30341250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress and autophagy: crucial modulators of kidney injury.
    Sureshbabu A; Ryter SW; Choi ME
    Redox Biol; 2015; 4():208-14. PubMed ID: 25613291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of monotropein on alleviating cisplatin-induced acute kidney injury by inhibiting oxidative damage, inflammation and apoptosis.
    Zhang Y; Chen Y; Li B; Ding P; Jin D; Hou S; Cai X; Sheng X
    Biomed Pharmacother; 2020 Sep; 129():110408. PubMed ID: 32574971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UCP2 ameliorates mitochondrial dysfunction, inflammation, and oxidative stress in lipopolysaccharide-induced acute kidney injury.
    Ding Y; Zheng Y; Huang J; Peng W; Chen X; Kang X; Zeng Q
    Int Immunopharmacol; 2019 Jun; 71():336-349. PubMed ID: 30952098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sirtuins: Research advances on the therapeutic role in acute kidney injury.
    Huang C; Jiang S; Gao S; Wang Y; Cai X; Fang J; Yan T; Craig Wan C; Cai Y
    Phytomedicine; 2022 Jul; 101():154122. PubMed ID: 35490494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p62/SQSTM1 protects against cisplatin-induced oxidative stress in kidneys by mediating the cross talk between autophagy and the Keap1-Nrf2 signalling pathway.
    Liao W; Wang Z; Fu Z; Ma H; Jiang M; Xu A; Zhang W
    Free Radic Res; 2019 Jul; 53(7):800-814. PubMed ID: 31223046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small Heat Shock Protein Beta-1 (HSPB1) Is Upregulated and Regulates Autophagy and Apoptosis of Renal Tubular Cells in Acute Kidney Injury.
    Matsumoto T; Urushido M; Ide H; Ishihara M; Hamada-Ode K; Shimamura Y; Ogata K; Inoue K; Taniguchi Y; Taguchi T; Horino T; Fujimoto S; Terada Y
    PLoS One; 2015; 10(5):e0126229. PubMed ID: 25962073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kidney-Targeted Nanoparticles Loaded with the Natural Antioxidant Rosmarinic Acid for Acute Kidney Injury Treatment.
    Li J; Duan Q; Wei X; Wu J; Yang Q
    Small; 2022 Dec; 18(48):e2204388. PubMed ID: 36253133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.