BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 35306428)

  • 21. Extracorporeal shock wave therapy decreases COX-2 by inhibiting TLR4-NFκB pathway in a prostatitis rat model.
    Jeon SH; Zhu GQ; Kwon EB; Lee KW; Cho HJ; Ha US; Hong SH; Lee JY; Bae WJ; Kim SW
    Prostate; 2019 Sep; 79(13):1498-1504. PubMed ID: 31376214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat-shock protein 70 expression in the seminal plasma of patients with chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome.
    Guo H; Xu YM; Ye ZQ; Yu JH; Fu Q; Sa YL; Hu XY; Song LJ
    Prostate Cancer Prostatic Dis; 2010 Dec; 13(4):338-42. PubMed ID: 20585345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MiR-155 affects renal carcinoma cell proliferation, invasion and apoptosis through regulating GSK-3β/β-catenin signaling pathway.
    Wei RJ; Zhang CH; Yang WZ
    Eur Rev Med Pharmacol Sci; 2017 Nov; 21(22):5034-5041. PubMed ID: 29228417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contemporary Management of Chronic Prostatitis/Chronic Pelvic Pain Syndrome.
    Magistro G; Wagenlehner FM; Grabe M; Weidner W; Stief CG; Nickel JC
    Eur Urol; 2016 Feb; 69(2):286-97. PubMed ID: 26411805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanism of aquapontin (AQP3) in regulating differentiation and apoptosis of lung cancer stem cells through Wnt/GSK-3β/β-Catenin pathway.
    Liu C; Liu L; Zhang Y; Jing H
    J BUON; 2020; 25(2):828-834. PubMed ID: 32521874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular mechanism of AQP3 in regulating differentiation and apoptosis of lung cancer stem cells through Wnt/GSK-3β/β-Catenin pathway.
    Liu C; Liu L; Zhang Y; Jing H
    J BUON; 2020; 25(4):1714-1720. PubMed ID: 33099905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. IL-17 is not essential for inflammation and chronic pelvic pain development in an experimental model of chronic prostatitis/chronic pelvic pain syndrome.
    Motrich RD; Breser ML; Sánchez LR; Godoy GJ; Prinz I; Rivero VE
    Pain; 2016 Mar; 157(3):585-597. PubMed ID: 26882345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 2,3,7,8-TCDD induces neurotoxicity and neuronal apoptosis in the rat brain cortex and PC12 cell line through the down-regulation of the Wnt/β-catenin signaling pathway.
    Xu G; Zhou Q; Wan C; Wang Y; Liu J; Li Y; Nie X; Cheng C; Chen G
    Neurotoxicology; 2013 Jul; 37():63-73. PubMed ID: 23619006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knowledge domain and emerging trends in chronic prostatitis/chronic pelvic pain syndrome from 1970 to 2020: a scientometric analysis based on VOSviewer and CiteSpace.
    Liu SJ; Gao QH; Deng YJ; Zen Y; Zhao M; Guo J
    Ann Palliat Med; 2022 May; 11(5):1714-1724. PubMed ID: 35144392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GLP-1 promotes osteogenic differentiation of human ADSCs via the Wnt/GSK-3β/β-catenin pathway.
    Li Y; Fu H; Wang H; Luo S; Wang L; Chen J; Lu H
    Mol Cell Endocrinol; 2020 Sep; 515():110921. PubMed ID: 32615283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prostate extract with aluminum hydroxide injection as a novel animal model for chronic prostatitis/chronic pelvic pain syndrome.
    Qi X; Han L; Liu X; Zhi J; Zhao B; Chen D; Yu F; Zhou X
    Urology; 2012 Dec; 80(6):1389.e9-15. PubMed ID: 23017785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Li-ESWT treatment reduces inflammation, oxidative stress, and pain via the PI3K/AKT/FOXO1 pathway in autoimmune prostatitis rat models.
    Feng B; Dong Z; Wang Y; Yan G; Yang E; Cheng H; Liang C; Hao Z; Zhang X; Song Z; Jiang Z; Chen M; Yue Z; Wang Z
    Andrology; 2021 Sep; 9(5):1593-1602. PubMed ID: 33960707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Levels of cytokines and heat-shock protein 70 in the seminal plasma of patients with chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome].
    Guo H; Xu YM; Ye ZQ; Yu JH
    Zhonghua Nan Ke Xue; 2012 Dec; 18(12):1088-92. PubMed ID: 23405788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of thermophilic bacterium HB27 manganese superoxide dismutase in a rat model of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS).
    Chen NW; Jin J; Xu H; Wei XC; Wu LF; Xie WH; Cheng YX; He Y; Gao JL
    Asian J Androl; 2022; 24(3):323-331. PubMed ID: 34747725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resveratrol improves prostate fibrosis during progression of urinary dysfunction in chronic prostatitis.
    He Y; Zeng HZ; Yu Y; Zhang JS; Duan X; Zeng XN; Gong FT; Liu Q; Yang B
    Environ Toxicol Pharmacol; 2017 Sep; 54():120-124. PubMed ID: 28704753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental Chronic Prostatitis/Chronic Pelvic Pain Syndrome Increases Anxiety-Like Behavior: The Role of Brain Oxidative Stress, Serum Corticosterone, and Hippocampal Parvalbumin-Positive Interneurons.
    Šutulović N; Grubač Ž; Šuvakov S; Jerotić D; Puškaš N; Macut D; Rašić-Marković A; Simić T; Stanojlović O; Hrnčić D
    Oxid Med Cell Longev; 2021; 2021():6687493. PubMed ID: 33815658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) on semen parameters in human males: a systematic review and meta-analysis.
    Fu W; Zhou Z; Liu S; Li Q; Yao J; Li W; Yan J
    PLoS One; 2014; 9(4):e94991. PubMed ID: 24743301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quercetin protects against chronic prostatitis in rat model through NF-κB and MAPK signaling pathways.
    Meng LQ; Yang FY; Wang MS; Shi BK; Chen DX; Chen D; Zhou Q; He QB; Ma LX; Cheng WL; Xing NZ
    Prostate; 2018 Aug; 78(11):790-800. PubMed ID: 29654614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Oral T2 Antigen on Chronic Prostatitis/Chronic Pelvic Pain Syndrome in Mice Model.
    Tang M; Ullah R; Wazir J; Khan FU; Ihsan AU; Cui X; Wang W; Hu M; Liu Y; Zhou X
    Inflammation; 2019 Dec; 42(6):2086-2094. PubMed ID: 31429013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of cytoplasmic GSK-3β increases cisplatin resistance through activation of Wnt/β-catenin signaling in A549/DDP cells.
    Gao Y; Liu Z; Zhang X; He J; Pan Y; Hao F; Xie L; Li Q; Qiu X; Wang E
    Cancer Lett; 2013 Aug; 336(1):231-9. PubMed ID: 23673211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.