These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 35306656)
1. Carbon price forecasting: a novel deep learning approach. Zhang F; Wen N Environ Sci Pollut Res Int; 2022 Aug; 29(36):54782-54795. PubMed ID: 35306656 [TBL] [Abstract][Full Text] [Related]
2. Forecasting carbon prices in China's pilot carbon market: A multi-source information approach with conditional generative adversarial networks. Huang Z; Zhang W J Environ Manage; 2024 May; 359():120967. PubMed ID: 38723494 [TBL] [Abstract][Full Text] [Related]
3. Forecasting Carbon Price in China: A Multimodel Comparison. Li H; Huang X; Zhou D; Cao A; Su M; Wang Y; Guo L Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627753 [TBL] [Abstract][Full Text] [Related]
4. Carbon price forecasting using multiscale nonlinear integration model coupled optimal feature reconstruction with biphasic deep learning. Wang J; Cheng Q; Sun X Environ Sci Pollut Res Int; 2022 Dec; 29(57):85988-86004. PubMed ID: 34453680 [TBL] [Abstract][Full Text] [Related]
5. Forecasting China carbon price using an error-corrected secondary decomposition hybrid model integrated fuzzy dispersion entropy and deep learning paradigm. Yun P; Zhou Y; Liu C; Wu Y; Pan D Environ Sci Pollut Res Int; 2024 Mar; 31(11):16530-16553. PubMed ID: 38321281 [TBL] [Abstract][Full Text] [Related]
6. Framework for multivariate carbon price forecasting: A novel hybrid model. Zhang X; Zong Y; Du P; Wang S; Wang J J Environ Manage; 2024 Oct; 369():122275. PubMed ID: 39217908 [TBL] [Abstract][Full Text] [Related]
7. A Novel Forecasting Approach by the GA-SVR-GRNN Hybrid Deep Learning Algorithm for Oil Future Prices. Wang L; Xia Y; Lu Y Comput Intell Neurosci; 2022; 2022():4952215. PubMed ID: 36045986 [TBL] [Abstract][Full Text] [Related]
8. A hybrid forecasting approach for China's national carbon emission allowance prices with balanced accuracy and interpretability. Mao Y; Yu X J Environ Manage; 2024 Feb; 351():119873. PubMed ID: 38159311 [TBL] [Abstract][Full Text] [Related]
9. A CNN-LSTM based deep learning model with high accuracy and robustness for carbon price forecasting: A case of Shenzhen's carbon market in China. Shi H; Wei A; Xu X; Zhu Y; Hu H; Tang S J Environ Manage; 2024 Feb; 352():120131. PubMed ID: 38266520 [TBL] [Abstract][Full Text] [Related]
10. A novel hybrid learning paradigm with feature extraction for carbon price prediction based on Bi-directional long short-term memory network optimized by an improved sparrow search algorithm. Zhou J; Xu Z; Wang S Environ Sci Pollut Res Int; 2022 Sep; 29(43):65585-65598. PubMed ID: 35488159 [TBL] [Abstract][Full Text] [Related]
11. Breaking through the limitation of carbon price forecasting: A novel hybrid model based on secondary decomposition and nonlinear integration. Lan Y; Huangfu Y; Huang Z; Zhang C J Environ Manage; 2024 Jun; 362():121253. PubMed ID: 38823294 [TBL] [Abstract][Full Text] [Related]
12. Probabilistic carbon price prediction with quantile temporal convolutional network considering uncertain factors. Cao Y; Zha D; Wang Q; Wen L J Environ Manage; 2023 Sep; 342():118137. PubMed ID: 37178463 [TBL] [Abstract][Full Text] [Related]
13. A carbon price hybrid forecasting model based on data multi-scale decomposition and machine learning. Yang P; Wang Y; Zhao S; Chen Z; Li Y Environ Sci Pollut Res Int; 2023 Jan; 30(2):3252-3269. PubMed ID: 35943654 [TBL] [Abstract][Full Text] [Related]
14. Electricity price forecast based on the STL-TCN-NBEATS model. Zhang B; Song C; Jiang X; Li Y Heliyon; 2023 Jan; 9(1):e13029. PubMed ID: 36820190 [TBL] [Abstract][Full Text] [Related]
15. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation. Khullar S; Singh N Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840 [TBL] [Abstract][Full Text] [Related]
16. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932 [TBL] [Abstract][Full Text] [Related]
17. Inflation Prediction Method Based on Deep Learning. Yang C; Guo S Comput Intell Neurosci; 2021; 2021():1071145. PubMed ID: 34456988 [TBL] [Abstract][Full Text] [Related]
18. Multi-step-ahead and interval carbon price forecasting using transformer-based hybrid model. Yue W; Zhong W; Xiaoyi W; Xinyu K Environ Sci Pollut Res Int; 2023 Sep; 30(42):95692-95719. PubMed ID: 37558913 [TBL] [Abstract][Full Text] [Related]
19. Which model is more efficient in carbon emission prediction research? A comparative study of deep learning models, machine learning models, and econometric models. Yao X; Zhang H; Wang X; Jiang Y; Zhang Y; Na X Environ Sci Pollut Res Int; 2024 Mar; 31(13):19500-19515. PubMed ID: 38355857 [TBL] [Abstract][Full Text] [Related]
20. An Economic Forecasting Method Based on the LightGBM-Optimized LSTM and Time-Series Model. Lv J; Wang C; Gao W; Zhao Q Comput Intell Neurosci; 2021; 2021():8128879. PubMed ID: 34621309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]