These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35306695)

  • 1. Influence of Oxidation on Structure, Performance, and Application of Metallic Glasses.
    Zhang M; Huang T; Zhang J; Deng L; Gong P; Wang X
    Adv Mater; 2022 Dec; 34(52):e2110365. PubMed ID: 35306695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in bulk metallic glasses for biomedical applications.
    Li HF; Zheng YF
    Acta Biomater; 2016 May; 36():1-20. PubMed ID: 27045349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review on Biocompatibility and Prospect Biomedical Applications of Novel Functional Metallic Glasses.
    Biały M; Hasiak M; Łaszcz A
    J Funct Biomater; 2022 Nov; 13(4):. PubMed ID: 36412886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications.
    Jafary-Zadeh M; Praveen Kumar G; Branicio PS; Seifi M; Lewandowski JJ; Cui F
    J Funct Biomater; 2018 Feb; 9(1):. PubMed ID: 29495521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cluster-assembled metallic glasses.
    Kartouzian A
    Nanoscale Res Lett; 2013 Jul; 8(1):339. PubMed ID: 23899019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase Transformations from Nanocrystalline to Amorphous (Zr
    El-Eskandarany MS; Ali N; Al-Ajmi F; Banyan M
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation processes and physical aging in metallic glasses.
    Ruta B; Pineda E; Evenson Z
    J Phys Condens Matter; 2017 Dec; 29(50):503002. PubMed ID: 29120342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural relaxation affecting shear-transformation avalanches in metallic glasses.
    Niiyama T; Wakeda M; Shimokawa T; Ogata S
    Phys Rev E; 2019 Oct; 100(4-1):043002. PubMed ID: 31770901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal expansion of Pd-based metallic glasses by ab initio methods and high energy X-ray diffraction.
    Evertz S; Music D; Schnabel V; Bednarcik J; Schneider JM
    Sci Rep; 2017 Nov; 7(1):15744. PubMed ID: 29146969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A predictive structural model for bulk metallic glasses.
    Laws KJ; Miracle DB; Ferry M
    Nat Commun; 2015 Sep; 6():8123. PubMed ID: 26370667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of zirconium metallic glass.
    Zhang J; Zhao Y
    Nature; 2004 Jul; 430(6997):332-5. PubMed ID: 15254533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-temperature bulk metallic glasses developed by combinatorial methods.
    Li MX; Zhao SF; Lu Z; Hirata A; Wen P; Bai HY; Chen M; Schroers J; Liu Y; Wang WH
    Nature; 2019 May; 569(7754):99-103. PubMed ID: 31043727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-density to high-density transition in Ce75Al23Si2 metallic glass.
    Zeng QS; Fang YZ; Lou HB; Gong Y; Wang XD; Yang K; Li AG; Yan S; Lathe C; Wu FM; Yu XH; Jiang JZ
    J Phys Condens Matter; 2010 Sep; 22(37):375404. PubMed ID: 21403196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A connection between the structural α-relaxation and the β-relaxation found in bulk metallic glass-formers.
    Ngai KL; Wang Z; Gao XQ; Yu HB; Wang WH
    J Chem Phys; 2013 Jul; 139(1):014502. PubMed ID: 23822309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making metallic glasses plastic by control of residual stress.
    Zhang Y; Wang WH; Greer AL
    Nat Mater; 2006 Nov; 5(11):857-60. PubMed ID: 17041581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility of micro/nano structures on the surface of Ti6Al4V and Ti-based bulk metallic glasses induced by femtosecond laser.
    Huang H; Zhang P; Tang M; Shen L; Yu Z; Shi H; Tian Y
    Biomater Adv; 2022 Aug; 139():212998. PubMed ID: 35882146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of atomic-level fractal structure in a metallic glass membrane.
    Jiang H; Xu J; Zhang Q; Yu Q; Shen L; Liu M; Sun Y; Cao C; Su D; Bai H; Meng S; Sun B; Gu L; Wang W
    Sci Bull (Beijing); 2021 Jul; 66(13):1312-1318. PubMed ID: 36654153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses.
    Yuan CC; Xiang JF; Xi XK; Wang WH
    Phys Rev Lett; 2011 Dec; 107(23):236403. PubMed ID: 22182108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the structural drivers governing glass-water interactions in borosilicate based model bioactive glasses.
    Stone-Weiss N; Pierce EM; Youngman RE; Gulbiten O; Smith NJ; Du J; Goel A
    Acta Biomater; 2018 Jan; 65():436-449. PubMed ID: 29127067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.