These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35307183)

  • 21. Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study.
    Hely FS; Amer PR; Walker SP; Symonds JE
    Animal; 2013 Jan; 7(1):1-10. PubMed ID: 23031385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genotyping more cows increases genetic gain and reduces rate of true inbreeding in a dairy cattle breeding scheme using female reproductive technologies.
    Thomasen JR; Liu H; Sørensen AC
    J Dairy Sci; 2020 Jan; 103(1):597-606. PubMed ID: 31733861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The advantage of factorial mating under selection is uncovered by deterministically predicted rates of inbreeding.
    Sørensen AC; Berg P; Woolliams JA
    Genet Sel Evol; 2005; 37(1):57-81. PubMed ID: 15588568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of closed adult nucleus multiple ovulation and embryo transfer and conventional progeny testing breeding schemes for milk production in tropical crossbred cattle.
    Kosgey IS; Kahi AK; Van Arendonk JA
    J Dairy Sci; 2005 Apr; 88(4):1582-94. PubMed ID: 15778328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced optimum contribution selection as a tool to improve regional cattle breeds: a feasibility study for Vorderwald cattle.
    Kohl S; Wellmann R; Herold P
    Animal; 2020 Jan; 14(1):1-12. PubMed ID: 31296274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimum multistage genomic selection in dairy cattle.
    Börner V; Teuscher F; Reinsch N
    J Dairy Sci; 2012 Apr; 95(4):2097-107. PubMed ID: 22459855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimizing the design of small-sized nucleus breeding programs for dairy cattle with minimal performance recording.
    Kariuki CM; Komen H; Kahi AK; van Arendonk JA
    J Dairy Sci; 2014 Dec; 97(12):7963-74. PubMed ID: 25282422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal mass selection policies for schemes with overlapping generations and restricted inbreeding.
    Villanueva B; Bijma P; Woolliams JA
    Genet Sel Evol; 2000; 32(4):339-55. PubMed ID: 14736382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic selection strategies in dairy cattle breeding programmes: Sexed semen cannot replace multiple ovulation and embryo transfer as superior reproductive technology.
    Pedersen LD; Kargo M; Berg P; Voergaard J; Buch LH; Sørensen AC
    J Anim Breed Genet; 2012 Apr; 129(2):152-63. PubMed ID: 22394237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic progress in multistage dairy cattle breeding schemes using genetic markers.
    Schrooten C; Bovenhuis H; van Arendonk JA; Bijma P
    J Dairy Sci; 2005 Apr; 88(4):1569-81. PubMed ID: 15778327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of a genomic breeding program for a moderately sized dairy cattle population.
    Reiner-Benaim A; Ezra E; Weller JI
    J Dairy Sci; 2017 Apr; 100(4):2892-2904. PubMed ID: 28189326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A combination of walk-back and optimum contribution selection in fish: a simulation study.
    Sonesson AK
    Genet Sel Evol; 2005; 37(6):587-99. PubMed ID: 16277969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic response and inbreeding with different selection methods and mating designs for nucleus breeding programs of dairy cattle.
    Leitch HW; Smith C; Burnside EB; Quinton M
    J Dairy Sci; 1994 Jun; 77(6):1702-18. PubMed ID: 8083430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic and economic responses for within-family marker-assisted selection in dairy cattle breeding schemes.
    Spelman RJ; Garrick DJ
    J Dairy Sci; 1998 Nov; 81(11):2942-50. PubMed ID: 9839238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maximizing genetic response in breeding schemes of dairy cattle with constraints on variance of response.
    Meuwissen TH; Woolliams JA
    J Dairy Sci; 1994 Jul; 77(7):1905-16. PubMed ID: 7929952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The impact of genomic selection on genetic diversity and genetic gain in three French dairy cattle breeds.
    Doublet AC; Croiseau P; Fritz S; Michenet A; Hozé C; Danchin-Burge C; Laloë D; Restoux G
    Genet Sel Evol; 2019 Sep; 51(1):52. PubMed ID: 31547802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Most of the long-term genetic gain from optimum-contribution selection can be realised with restrictions imposed during optimisation.
    Henryon M; Ostersen T; Ask B; Sørensen AC; Berg P
    Genet Sel Evol; 2015 Mar; 47(1):21. PubMed ID: 25887703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel optimum contribution selection methods accounting for conflicting objectives in breeding programs for livestock breeds with historical migration.
    Wang Y; Bennewitz J; Wellmann R
    Genet Sel Evol; 2017 May; 49(1):45. PubMed ID: 28499352
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of Linear Programming and Optimal Contribution Selection Approaches for Long-Term Selection on Beef Cattle Breeding.
    Zheng X; Wang T; Niu Q; Wu J; Zhao Z; Gao H; Li J; Xu L
    Biology (Basel); 2023 Aug; 12(9):. PubMed ID: 37759557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the genetic trend of milk yield in the multiple ovulation and embryo transfer populations of dairy cows, using stochastic simulation.
    Hossein-Zadeh NG
    C R Biol; 2010 Oct; 333(10):710-5. PubMed ID: 20965440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.