These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35307183)

  • 61. Investigating the benefits and perils of importing genetic material in small cattle breeding programs via simulation.
    Obšteter J; Jenko J; Pocrnic I; Gorjanc G
    J Dairy Sci; 2023 Aug; 106(8):5593-5605. PubMed ID: 37474361
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Superiority of QTL-assisted selection in dairy cattle breeding schemes.
    Abdel-Azim G; Freeman AE
    J Dairy Sci; 2002 Jul; 85(7):1869-80. PubMed ID: 12201538
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of variability in response to superovulation on donor cow selection differentials in nucleus breeding schemes.
    Keller DS; Teepker G
    J Dairy Sci; 1990 Feb; 73(2):549-54. PubMed ID: 2329209
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Evaluation of inbreeding in laying hens by applying optimum genetic contribution and gene flow theory.
    König S; Tsehay F; Sitzenstock F; von Borstel UU; Schmutz M; Preisinger R; Simianer H
    Poult Sci; 2010 Apr; 89(4):658-67. PubMed ID: 20308397
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Trends in genome-wide and region-specific genetic diversity in the Dutch-Flemish Holstein-Friesian breeding program from 1986 to 2015.
    Doekes HP; Veerkamp RF; Bijma P; Hiemstra SJ; Windig JJ
    Genet Sel Evol; 2018 Apr; 50(1):15. PubMed ID: 29642838
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Controlling inbreeding and maximizing genetic gain using semi-definite programming with pedigree-based and genomic relationships.
    Schierenbeck S; Pimentel EC; Tietze M; Körte J; Reents R; Reinhardt F; Simianer H; König S
    J Dairy Sci; 2011 Dec; 94(12):6143-52. PubMed ID: 22118102
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Multiple ovulation and embryo manipulation in the improvement of beef cattle: relative theoretical rates of genetic change.
    Gearheart WW; Smith C; Teepker G
    J Anim Sci; 1989 Nov; 67(11):2863-71. PubMed ID: 2592274
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Genomic selection strategies in a small dairy cattle population evaluated for genetic gain and profit.
    Thomasen JR; Egger-Danner C; Willam A; Guldbrandtsen B; Lund MS; Sørensen AC
    J Dairy Sci; 2014; 97(1):458-70. PubMed ID: 24239076
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Competitive gene flow does not necessarily maximize the genetic gain of genomic breeding programs in the presence of genotype-by-environment interaction.
    Cao L; Mulder HA; Liu H; Nielsen HM; S Rensen AC
    J Dairy Sci; 2021 Jul; 104(7):8122-8134. PubMed ID: 33934864
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Breakeven costs for embryo transfer in a commercial dairy herd.
    Ferris TA; Troyer BW
    J Dairy Sci; 1987 Nov; 70(11):2394-401. PubMed ID: 3693642
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Short communication: Pure-breeding with sexed semen and crossbreeding with semen from double-muscled sires to improve beef production from dairy herds: Weight and value of calves.
    Bittante G; Negrini R; Bergamaschi M; Cecchinato A; Toledo-Alvarado H
    J Dairy Sci; 2020 Jun; 103(6):5258-5262. PubMed ID: 32307159
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Trends in genetic diversity and the effect of inbreeding in American Angus cattle under genomic selection.
    Lozada-Soto EA; Maltecca C; Lu D; Miller S; Cole JB; Tiezzi F
    Genet Sel Evol; 2021 Jun; 53(1):50. PubMed ID: 34134619
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Integrating genomic selection into dairy cattle breeding programmes: a review.
    Bouquet A; Juga J
    Animal; 2013 May; 7(5):705-13. PubMed ID: 23200196
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Optimising multistage dairy cattle breeding schemes including genomic selection using decorrelated or optimum selection indices.
    Börner V; Reinsch N
    Genet Sel Evol; 2012 Jan; 44(1):1. PubMed ID: 22252172
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Most of the benefits from genomic selection can be realized by genotyping a small proportion of available selection candidates.
    Henryon M; Berg P; Ostersen T; Nielsen B; Sørensen AC
    J Anim Sci; 2012 Dec; 90(13):4681-9. PubMed ID: 23087087
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genotyping strategies of selection candidates in livestock breeding programmes.
    Granleese T; Clark SA; van der Werf JHJ
    J Anim Breed Genet; 2019 Mar; 136(2):91-101. PubMed ID: 30690805
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Genomic selection in beef cattle creates additional opportunities for embryo technologies to meet industry needs.
    Miller S
    Reprod Fertil Dev; 2022 Dec; 35(2):98-105. PubMed ID: 36592979
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Use of female information in dairy cattle genomic breeding programs.
    Mc Hugh N; Meuwissen TH; Cromie AR; Sonesson AK
    J Dairy Sci; 2011 Aug; 94(8):4109-18. PubMed ID: 21787946
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The effect of genomic information on optimal contribution selection in livestock breeding programs.
    Clark SA; Kinghorn BP; Hickey JM; van der Werf JH
    Genet Sel Evol; 2013 Oct; 45(1):44. PubMed ID: 24171942
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Efficient use of genomic information for sustainable genetic improvement in small cattle populations.
    Obšteter J; Jenko J; Hickey JM; Gorjanc G
    J Dairy Sci; 2019 Nov; 102(11):9971-9982. PubMed ID: 31477287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.