These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35307183)

  • 81. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population.
    Mueller ML; Cole JB; Sonstegard TS; Van Eenennaam AL
    J Dairy Sci; 2019 May; 102(5):4215-4226. PubMed ID: 30852022
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Comparison of economic returns among genetic evaluation strategies in a 2-tiered Charolais-sired beef cattle production system.
    Buchanan JW; MacNeil MD; Raymond RC; Nilles AR; Van Eenennaam AL
    J Anim Sci; 2018 Sep; 96(10):4076-4086. PubMed ID: 30053023
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Mating strategies with genomic information reduce rates of inbreeding in animal breeding schemes without compromising genetic gain.
    Liu H; Henryon M; Sørensen AC
    Animal; 2017 Apr; 11(4):547-555. PubMed ID: 27531662
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Use of embryo transfer seven days after artificial insemination or transferring identical demi-embryos to increase twinning in beef cattle.
    Dahlen CR; DiCostanzo A; Spell AR; Lamb GC
    J Anim Sci; 2012 Dec; 90(13):4823-32. PubMed ID: 22871934
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Optimal strategies for the use of genomic selection in dairy cattle breeding programs.
    Wensch-Dorendorf M; Yin T; Swalve HH; König S
    J Dairy Sci; 2011 Aug; 94(8):4140-51. PubMed ID: 21787949
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A mating advice system in dairy cattle incorporating genomic information.
    Carthy TR; McCarthy J; Berry DP
    J Dairy Sci; 2019 Sep; 102(9):8210-8220. PubMed ID: 31229287
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Genomic selection in dairy cattle simulated populations.
    Seno LO; Guidolin DGF; Aspilcueta-Borquis RR; Nascimento GBD; Silva TBRD; Oliveira HN; Munari DP
    J Dairy Res; 2018 May; 85(2):125-132. PubMed ID: 29785919
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Genomic Breeding Programs Realize Larger Benefits by Cooperation in the Presence of Genotype × Environment Interaction Than Conventional Breeding Programs.
    Cao L; Liu H; Mulder HA; Henryon M; Thomasen JR; Kargo M; Sørensen AC
    Front Genet; 2020; 11():251. PubMed ID: 32373152
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Optimization of selection contribution and mate allocations in monoecious tree breeding populations.
    Hallander J; Waldmann P
    BMC Genet; 2009 Nov; 10():70. PubMed ID: 19895684
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Economic aspects of implementing genomic evaluations in a pig sire line breeding scheme.
    Tribout T; Larzul C; Phocas F
    Genet Sel Evol; 2013 Oct; 45(1):40. PubMed ID: 24127883
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Inbreeding trends and application of optimized selection in the UK Holstein population.
    Kearney JF; Wall E; Villanueva B; Coffey MP
    J Dairy Sci; 2004 Oct; 87(10):3503-9. PubMed ID: 15377628
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Assessing the impact of natural service bulls and genotype by environment interactions on genetic gain and inbreeding in organic dairy cattle genomic breeding programs.
    Yin T; Wensch-Dorendorf M; Simianer H; Swalve HH; König S
    Animal; 2014 Jun; 8(6):877-86. PubMed ID: 24703184
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Optimized testing schemes using nucleus progeny, adult MOET siblings, or juvenile MOET pedigrees in dairy cattle closed populations.
    Bondoc OL; Smith C
    J Anim Breed Genet; 1993 Jan; 110(1-6):30-40. PubMed ID: 21395701
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Genomic selection requires genomic control of inbreeding.
    Sonesson AK; Woolliams JA; Meuwissen TH
    Genet Sel Evol; 2012 Aug; 44(1):27. PubMed ID: 22898324
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Invited review: Use of assisted reproduction techniques to accelerate genetic gain and increase value of beef production in dairy herds.
    Crowe AD; Lonergan P; Butler ST
    J Dairy Sci; 2021 Dec; 104(12):12189-12206. PubMed ID: 34538485
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Adding cows to the reference population makes a small dairy population competitive.
    Thomasen JR; Sørensen AC; Lund MS; Guldbrandtsen B
    J Dairy Sci; 2014 Sep; 97(9):5822-32. PubMed ID: 24996280
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Genetic and economic evaluation of Japanese Black (Wagyu) cattle breeding schemes.
    Kahi AK; Hirooka H
    J Anim Sci; 2005 Sep; 83(9):2021-32. PubMed ID: 16100056
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Mendelian sampling terms as a selective advantage in optimum breeding schemes with restrictions on the rate of inbreeding.
    Avendaño S; Woolliams JA; Villanueva B
    Genet Res; 2004 Feb; 83(1):55-64. PubMed ID: 15125067
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Economic evaluation of progeny-testing and genomic selection schemes for small-sized nucleus dairy cattle breeding programs in developing countries.
    Kariuki CM; Brascamp EW; Komen H; Kahi AK; van Arendonk JAM
    J Dairy Sci; 2017 Mar; 100(3):2258-2268. PubMed ID: 28109609
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Selection against genetic defects in conservation schemes while controlling inbreeding.
    Sonesson AK; Janss LL; Meuwissen TH
    Genet Sel Evol; 2003; 35(4):353-68. PubMed ID: 12927071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.