These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35307314)

  • 1. Integrating mutational and nonmutational mechanisms of acquired therapy resistance within the Darwinian paradigm.
    Vander Velde R; Shaffer S; Marusyk A
    Trends Cancer; 2022 Jun; 8(6):456-466. PubMed ID: 35307314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of acquired resistance to targeted cancer therapies.
    Lackner MR; Wilson TR; Settleman J
    Future Oncol; 2012 Aug; 8(8):999-1014. PubMed ID: 22894672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor progression: chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution.
    Huang S
    Prog Biophys Mol Biol; 2012 Sep; 110(1):69-86. PubMed ID: 22579660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution.
    Skinner MK
    Genome Biol Evol; 2015 Apr; 7(5):1296-302. PubMed ID: 25917417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetics and metabolism at the crossroads of stress-induced plasticity, stemness and therapeutic resistance in cancer.
    Ravindran Menon D; Hammerlindl H; Torrano J; Schaider H; Fujita M
    Theranostics; 2020; 10(14):6261-6277. PubMed ID: 32483452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular and mathematical basis of Waddington's epigenetic landscape: a framework for post-Darwinian biology?
    Huang S
    Bioessays; 2012 Feb; 34(2):149-57. PubMed ID: 22102361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principles and mechanisms of non-genetic resistance in cancer.
    Bell CC; Gilan O
    Br J Cancer; 2020 Feb; 122(4):465-472. PubMed ID: 31831859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Yin and Yang of anti-Darwinian epigenetics and Darwinian genetics.
    Damiani G
    Riv Biol; 2007; 100(3):361-402. PubMed ID: 18278738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical models of cell phenotype regulation and reprogramming: Make cancer cells sensitive again!
    Wooten DJ; Quaranta V
    Biochim Biophys Acta Rev Cancer; 2017 Apr; 1867(2):167-175. PubMed ID: 28396217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and non-genetic drug resistance: Darwin or Lamarck?
    Russo M
    Mol Oncol; 2024 Feb; 18(2):241-244. PubMed ID: 38308461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the role of phenotypic switching in cancer drug resistance.
    Gunnarsson EB; De S; Leder K; Foo J
    J Theor Biol; 2020 Apr; 490():110162. PubMed ID: 31953135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genes as cues: phenotypic integration of genetic and epigenetic information from a Darwinian perspective.
    Dall SR; McNamara JM; Leimar O
    Trends Ecol Evol; 2015 Jun; 30(6):327-33. PubMed ID: 25944666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified approach to the evolutionary consequences of genetic and nongenetic inheritance.
    Day T; Bonduriansky R
    Am Nat; 2011 Aug; 178(2):E18-36. PubMed ID: 21750377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging roles of H3K9me3, SETDB1 and SETDB2 in therapy-induced cellular reprogramming.
    Torrano J; Al Emran A; Hammerlindl H; Schaider H
    Clin Epigenetics; 2019 Mar; 11(1):43. PubMed ID: 30850015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatic clonal evolution: A selection-centric perspective.
    Scott J; Marusyk A
    Biochim Biophys Acta Rev Cancer; 2017 Apr; 1867(2):139-150. PubMed ID: 28161395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution.
    Ling S; Hu Z; Yang Z; Yang F; Li Y; Lin P; Chen K; Dong L; Cao L; Tao Y; Hao L; Chen Q; Gong Q; Wu D; Li W; Zhao W; Tian X; Hao C; Hungate EA; Catenacci DV; Hudson RR; Li WH; Lu X; Wu CI
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):E6496-505. PubMed ID: 26561581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of Darwinian Selection, Lamarckian Induction and Microvesicle Transfer on Drug Resistance in Cancer.
    Álvarez-Arenas A; Podolski-Renic A; Belmonte-Beitia J; Pesic M; Calvo GF
    Sci Rep; 2019 Jun; 9(1):9332. PubMed ID: 31249353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Epigenetic Therapy to Overcome Chemotherapy Resistance.
    Strauss J; Figg WD
    Anticancer Res; 2016 Jan; 36(1):1-4. PubMed ID: 26722021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global analysis of a cancer model with drug resistance due to Lamarckian induction and microvesicle transfer.
    Dénes A; Marzban S; Röst G
    J Theor Biol; 2021 Oct; 527():110812. PubMed ID: 34129816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Therapy Resistance in Cancers: Phenotypic, Metabolic, Epigenetic and Tumour Microenvironmental Perspectives.
    Zahan T; Das PK; Akter SF; Habib R; Rahman MH; Karim MR; Islam F
    Anticancer Agents Med Chem; 2020; 20(18):2190-2206. PubMed ID: 32748758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.