These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 3530795)

  • 21. The proliferative response of astrocytes to injury in neonatal rat brain. A combined immunocytochemical and autoradiographic study.
    Janeczko K
    Brain Res; 1988 Jul; 456(2):280-5. PubMed ID: 3061563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain.
    Levitt P; Rakic P
    J Comp Neurol; 1980 Oct; 193(3):815-40. PubMed ID: 7002963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Problems encountered when immunocytochemistry is used for quantitative glial cell identification in autoradiographic studies of cell proliferation in the brain of the unlesioned adult mouse.
    Korr H; Horsmann C; Schürmann M; Delaunoy JP; Labourdette G
    Cell Tissue Res; 1994 Oct; 278(1):85-95. PubMed ID: 7525071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Astrocytes and guidance of outgrowing corticospinal tract axons in the rat. An immunocytochemical study using anti-vimentin and anti-glial fibrillary acidic protein.
    Joosten EA; Gribnau AA
    Neuroscience; 1989; 31(2):439-52. PubMed ID: 2797445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glial fibrillary acidic protein and vimentin immunoreactivity of astroglial cells in the central nervous system of the African lungfish, Protopterus annectens (Dipnoi: Lepidosirenidae).
    Lazzari M; Franceschini V
    J Morphol; 2004 Dec; 262(3):741-9. PubMed ID: 15487019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Astroglial response in the excitotoxically lesioned neostriatum and its projection areas in the rat.
    Isacson O; Fischer W; Wictorin K; Dawbarn D; Björklund A
    Neuroscience; 1987 Mar; 20(3):1043-56. PubMed ID: 3601061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The transitional region of the eighth nerve in elderly humans: light and electron microscopic study.
    Matsunaga T; Kanzaki J; Ogawa Y; Hosoda Y
    Auris Nasus Larynx; 1994; 21(2):90-7. PubMed ID: 7993232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid growth of astrocytic processes in N. magnocellularis following cochlea removal.
    Rubel EW; MacDonald GH
    J Comp Neurol; 1992 Apr; 318(4):415-25. PubMed ID: 1374444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunocytochemical characterization of a new marker of fibrous and reactive astrocytes.
    Ridet JL; Alonso G; Chauvet N; Chapron J; Koenig J; Privat A
    Cell Tissue Res; 1996 Jan; 283(1):39-49. PubMed ID: 8581958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stereological assessment of the glial reaction to chronic deafferentation of the cochlear nuclei in the macaque monkey (Macaca fascicularis).
    Insausti AM; Cruz-Orive LM; Jáuregui I; Manrique M; Insausti R
    J Comp Neurol; 1999 Nov; 414(4):485-94. PubMed ID: 10531541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of astrocytes and their relation to blood vessels in fetal monkey retina.
    Gariano RF; Sage EH; Kaplan HJ; Hendrickson AE
    Invest Ophthalmol Vis Sci; 1996 Nov; 37(12):2367-75. PubMed ID: 8933753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immunocytochemical demonstration of both carbonic anhydrase isoenzyme II and glial fibrillary acidic protein in some immature rat glial cells in primary culture.
    Langui D; Delaunoy JP; Ghandour MS; Sensenbrenner M
    Neurosci Lett; 1985 Sep; 60(2):151-6. PubMed ID: 3932904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Migrated fetal astrocytes modulate nerve growth factor expression in host nucleus gracilis of the medulla after grafting in third cervical hindlimb dorsal columns of the spinal cord.
    Bernstein JJ; Willingham LA; Goldberg WJ
    J Neurosci Res; 1993 Mar; 34(4):394-400. PubMed ID: 8474141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective labeling of sensory hair cells and neurons in auditory, vestibular, and lateral line systems by a monoclonal antibody.
    Kornblum HI; Corwin JT; Trevarrow B
    J Comp Neurol; 1990 Nov; 301(2):162-70. PubMed ID: 2124588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunohistochemical demonstration of glial fibrillary acidic protein (GFAP) in nasal gliomas.
    Bozoky B; Stiller D; Ormos J
    Acta Histochem; 1987; 81(1):117-23. PubMed ID: 3105212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A demonstration of glial filament distribution in astrocytes isolated from rat cerebral cortex.
    Connor JR; Berkowitz EM
    Neuroscience; 1985 Sep; 16(1):33-44. PubMed ID: 2423916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunocytochemical double labeling of glial fibrillary acidic protein and transferrin permits the identification of astrocytes and oligodendrocytes in the rat brain.
    Martin SM; Landel HB; Lansing AJ; Vijayan VK
    J Neuropathol Exp Neurol; 1991 Mar; 50(2):161-70. PubMed ID: 1707090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glial fibrillary acidic protein in cryogenic lesions of the rat brain.
    Amaducci L; Forno KI; Eng LF
    Neurosci Lett; 1981 Jan; 21(1):27-32. PubMed ID: 7207867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GFAP-immunoreactive perivascular glia in the chick optic tectum.
    Virgintino D; Nicolardi G; Bertossi M; Nico B; Ribatti D; Ambrosi G; Roncali L
    Eur J Histochem; 1992; 36(4):445-54. PubMed ID: 1283832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microglia and astrocytes in the adult rat brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoreactivity.
    Savchenko VL; McKanna JA; Nikonenko IR; Skibo GG
    Neuroscience; 2000; 96(1):195-203. PubMed ID: 10683423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.