These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. Malebrán LP; Cardemil E Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926 [TBL] [Abstract][Full Text] [Related]
24. Inhibition and covalent modification of rape seed (Brassica napus) enoyl ACP reductase by phenylglyoxal. Cottingham IR; Austin AJ; Slabas AR Biochim Biophys Acta; 1989 May; 995(3):273-8. PubMed ID: 2706276 [TBL] [Abstract][Full Text] [Related]
25. Inactivation of rabbit liver carbonyl reductase by phenylglyoxal and 2,3,4-trinitrobenzenesulfonate sodium. Imamura Y; Koga T; Shimada H; Otagiri M J Enzyme Inhib Med Chem; 2003 Feb; 18(1):35-9. PubMed ID: 12751818 [TBL] [Abstract][Full Text] [Related]
26. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding. Adak S; Mazumder A; Banerjee RK Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798 [TBL] [Abstract][Full Text] [Related]
27. Coenzyme B12-dependent diol dehydrase: chemical modification with 2,3-butanedione and phenylglyoxal. Kuno S; Toraya T; Fukui S Arch Biochem Biophys; 1980 Nov; 205(1):240-5. PubMed ID: 7004358 [No Abstract] [Full Text] [Related]
28. Chemical modification of arginine residues in the lactose repressor. Whitson PA; Matthews KS Biochemistry; 1987 Oct; 26(20):6502-7. PubMed ID: 3322382 [TBL] [Abstract][Full Text] [Related]
29. Essential arginines in mercuric reductase isolated from Yersinia enterocolitica 138A14. Blaghen M; el Kebbaj MS; Vidon DJ; Tritsch D Biochimie; 1992 Jun; 74(6):557-60. PubMed ID: 1520735 [TBL] [Abstract][Full Text] [Related]
30. Purification and properties of two oxidoreductases catalyzing the enantioselective reduction of diacetyl and other diketones from baker's yeast. Heidlas J; Tressl R Eur J Biochem; 1990 Feb; 188(1):165-74. PubMed ID: 2180695 [TBL] [Abstract][Full Text] [Related]
31. Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis. O'Hara P; Slabas AR; Fawcett T Plant Physiol; 2002 May; 129(1):310-20. PubMed ID: 12011361 [TBL] [Abstract][Full Text] [Related]
32. Inactivation of Escherichia coli L-threonine dehydrogenase by 2,3-butanedione. Evidence for a catalytically essential arginine residue. Epperly BR; Dekker EE J Biol Chem; 1989 Nov; 264(31):18296-301. PubMed ID: 2681195 [TBL] [Abstract][Full Text] [Related]
33. Inactivation of glutamate dehydrogenase and glutamate synthase from Bacillus megaterium by phenylglyoxal, butane-2,3-dione and pyridoxal 5'-phosphate. Hemmilä IA; Mäntsälä PI Biochem J; 1978 Jul; 173(1):53-8. PubMed ID: 28736 [TBL] [Abstract][Full Text] [Related]
34. Discovery of GSK837149A, an inhibitor of human fatty acid synthase targeting the beta-ketoacyl reductase reaction. Vázquez MJ; Leavens W; Liu R; Rodríguez B; Read M; Richards S; Winegar D; Domínguez JM FEBS J; 2008 Apr; 275(7):1556-1567. PubMed ID: 18312417 [TBL] [Abstract][Full Text] [Related]
35. Elementary steps in the reaction mechanism of chicken liver fatty acid synthase. pH dependence of NADPH binding and isotope rate effect for beta-ketoacyl reductase. Yuan Z; Hammes GG J Biol Chem; 1984 Jun; 259(11):6748-51. PubMed ID: 6373765 [TBL] [Abstract][Full Text] [Related]
36. Essential arginine residues in the pyridine nucleotide binding sites of glutathione reductase. Boggaram V; Mannervik B Biochim Biophys Acta; 1982 Feb; 701(1):119-26. PubMed ID: 7055581 [TBL] [Abstract][Full Text] [Related]
37. The enoyl-[acyl-carrier-protein] reductase (FabI) of Escherichia coli, which catalyzes a key regulatory step in fatty acid biosynthesis, accepts NADH and NADPH as cofactors and is inhibited by palmitoyl-CoA. Bergler H; Fuchsbichler S; Högenauer G; Turnowsky F Eur J Biochem; 1996 Dec; 242(3):689-94. PubMed ID: 9022698 [TBL] [Abstract][Full Text] [Related]
38. Arginine-specific modification of rabbit muscle phosphoglucose isomerase: differences in the inactivation by phenylglyoxal and butanedione and in the protection by substrate analogs. Pullan LM; Igarashi P; Noltmann EA Arch Biochem Biophys; 1983 Mar; 221(2):489-98. PubMed ID: 6838203 [TBL] [Abstract][Full Text] [Related]
39. Chemical modification of arginine and lysine residues in coenzyme-binding domain of carbonyl reductase from rabbit kidney: indomethacin affords a significant protection against inactivation of the enzyme by phenylglyoxal. Higuchi T; Imamura Y; Otagiri M Biochim Biophys Acta; 1994 Jan; 1199(1):81-6. PubMed ID: 8280759 [TBL] [Abstract][Full Text] [Related]
40. Analyses of co-operative transitions in Plasmodium falciparum beta-ketoacyl acyl carrier protein reductase upon co-factor and acyl carrier protein binding. Karmodiya K; Surolia N FEBS J; 2006 Sep; 273(17):4093-103. PubMed ID: 16934037 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]