BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35308400)

  • 1. Identification and Functional Analysis of GTP Cyclohydrolase II in
    Nasuno R; Suzuki S; Oiki S; Hagiwara D; Takagi H
    Front Microbiol; 2022; 13():825121. PubMed ID: 35308400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Mechanism for Nitrosative Stress Tolerance Dependent on GTP Cyclohydrolase II Activity Involved in Riboflavin Synthesis of Yeast.
    Anam K; Nasuno R; Takagi H
    Sci Rep; 2020 Apr; 10(1):6015. PubMed ID: 32265460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new regulator in the crossroads of oxidative stress resistance and virulence in
    Pais P; Vagueiro S; Mil-Homens D; Pimenta AI; Viana R; Okamoto M; Chibana H; Fialho AM; Teixeira MC
    Virulence; 2020 Dec; 11(1):1522-1538. PubMed ID: 33135521
    [No Abstract]   [Full Text] [Related]  

  • 4. Molecular cloning of the GTP-cyclohydrolase structural gene RIB1 of Pichia guilliermondii involved in riboflavin biosynthesis.
    Liauta-Teglivets O; Hasslacher M; Boretskii IuR; Kohlwein SD; Shavlovskii GM
    Yeast; 1995 Aug; 11(10):945-52. PubMed ID: 8533469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Response to Drugs and Stress in the Pathogenic Yeast Candida glabrata.
    Pais P; Galocha M; Teixeira MC
    Prog Mol Subcell Biol; 2019; 58():155-193. PubMed ID: 30911893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Characterization of a Novel Oxidative Stress Protection Protein in the Pathogenic Yeast
    Usher J; Chaudhari Y; Attah V; Ho HL; Haynes K
    Front Genet; 2020; 11():530915. PubMed ID: 33101372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata.
    Iosue CL; Attanasio N; Shaik NF; Neal EM; Leone SG; Cali BJ; Peel MT; Grannas AM; Wykoff DD
    PLoS One; 2016; 11(3):e0152042. PubMed ID: 27015653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. S-glutathionylation of fructose-1,6-bisphosphate aldolase confers nitrosative stress tolerance on yeast cells via a metabolic switch.
    Shino S; Nasuno R; Takagi H
    Free Radic Biol Med; 2022 Nov; 193(Pt 1):319-329. PubMed ID: 36272668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.
    Gerwien F; Safyan A; Wisgott S; Hille F; Kaemmer P; Linde J; Brunke S; Kasper L; Hube B
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining the transcriptomic landscape of Candida glabrata by RNA-Seq.
    Linde J; Duggan S; Weber M; Horn F; Sieber P; Hellwig D; Riege K; Marz M; Martin R; Guthke R; Kurzai O
    Nucleic Acids Res; 2015 Feb; 43(3):1392-406. PubMed ID: 25586221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallothionein Cup1 attenuates nitrosative stress in the yeast
    Yoshikawa Y; Nasuno R; Takaya N; Takagi H
    Microb Cell; 2023 Aug; 10(8):170-177. PubMed ID: 37545644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of Riboflavin Excretase Enhances Riboflavin Production in the Yeast Candida famata.
    Tsyrulnyk AO; Fedorovych DV; Dmytruk KV; Sibirny AA
    Methods Mol Biol; 2021; 2280():31-42. PubMed ID: 33751427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages.
    Seider K; Gerwien F; Kasper L; Allert S; Brunke S; Jablonowski N; Schwarzmüller T; Barz D; Rupp S; Kuchler K; Hube B
    Eukaryot Cell; 2014 Jan; 13(1):170-83. PubMed ID: 24363366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candida and candidaemia. Susceptibility and epidemiology.
    Arendrup MC
    Dan Med J; 2013 Nov; 60(11):B4698. PubMed ID: 24192246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss-of-Function
    Ollinger TL; Vu B; Murante D; Parker JE; Simonicova L; Doorley L; Stamnes MA; Kelly SL; Rogers PD; Moye-Rowley WS; Krysan DJ
    mSphere; 2021 Dec; 6(6):e0083021. PubMed ID: 34935446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata.
    Briones-Martin-Del-Campo M; Orta-Zavalza E; Juarez-Cepeda J; Gutierrez-Escobedo G; Cañas-Villamar I; Castaño I; De Las Peñas A
    Rev Iberoam Micol; 2014; 31(1):67-71. PubMed ID: 24270068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intestinal resident yeast Candida glabrata requires Cyb2p-mediated lactate assimilation to adapt in mouse intestine.
    Ueno K; Matsumoto Y; Uno J; Sasamoto K; Sekimizu K; Kinjo Y; Chibana H
    PLoS One; 2011; 6(9):e24759. PubMed ID: 21931845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress.
    Koskenkorva-Frank TS; Weiss G; Koppenol WH; Burckhardt S
    Free Radic Biol Med; 2013 Dec; 65():1174-1194. PubMed ID: 24036104
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Kumar K; Askari F; Sahu MS; Kaur R
    Microorganisms; 2019 Jan; 7(2):. PubMed ID: 30704135
    [No Abstract]   [Full Text] [Related]  

  • 20. Analysis of Volatile Molecules Present in the Secretome of the Fungal Pathogen
    López-Ramos JE; Bautista E; Gutiérrez-Escobedo G; Mancilla-Montelongo G; Castaño I; González-Chávez MM; De Las Peñas A
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34202061
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.