BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35308400)

  • 21. Candida glabrata Ste20 is involved in maintaining cell wall integrity and adaptation to hypertonic stress, and is required for wild-type levels of virulence.
    Calcagno AM; Bignell E; Rogers TR; Canedo M; Mühlschlegel FA; Haynes K
    Yeast; 2004 May; 21(7):557-68. PubMed ID: 15164359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential response of Candida albicans and Candida glabrata to oxidative and nitrosative stresses.
    Cuéllar-Cruz M; López-Romero E; Ruiz-Baca E; Zazueta-Sandoval R
    Curr Microbiol; 2014 Nov; 69(5):733-9. PubMed ID: 25002360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sugar Sensing and Signaling in
    Van Ende M; Wijnants S; Van Dijck P
    Front Microbiol; 2019; 10():99. PubMed ID: 30761119
    [No Abstract]   [Full Text] [Related]  

  • 24. RNAi as a Tool to Study Virulence in the Pathogenic Yeast
    Ishchuk OP; Ahmad KM; Koruza K; Bojanovič K; Sprenger M; Kasper L; Brunke S; Hube B; Säll T; Hellmark T; Gullstrand B; Brion C; Freel K; Schacherer J; Regenberg B; Knecht W; Piškur J
    Front Microbiol; 2019; 10():1679. PubMed ID: 31396189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans.
    Yadav AK; Desai PR; Rai MN; Kaur R; Ganesan K; Bachhawat AK
    Microbiology (Reading); 2011 Feb; 157(Pt 2):484-495. PubMed ID: 20966090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular Elucidation of Riboflavin Production and Regulation in Candida albicans, toward a Novel Antifungal Drug Target.
    Demuyser L; Palmans I; Vandecruys P; Van Dijck P
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32759338
    [No Abstract]   [Full Text] [Related]  

  • 27. Sterol uptake and sterol biosynthesis act coordinately to mediate antifungal resistance in Candida glabrata under azole and hypoxic stress.
    Li QQ; Tsai HF; Mandal A; Walker BA; Noble JA; Fukuda Y; Bennett JE
    Mol Med Rep; 2018 May; 17(5):6585-6597. PubMed ID: 29532896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An HcpR paralog of Desulfovibrio gigas provides protection against nitrosative stress.
    da Silva SM; Amaral C; Neves SS; Santos C; Pimentel C; Rodrigues-Pousada C
    FEBS Open Bio; 2015; 5():594-604. PubMed ID: 26273559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata.
    Cuéllar-Cruz M; Castaño I; Arroyo-Helguera O; De Las Peñas A
    Mem Inst Oswaldo Cruz; 2009 Jul; 104(4):649-54. PubMed ID: 19722092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria.
    Kaur R; Castaño I; Cormack BP
    Antimicrob Agents Chemother; 2004 May; 48(5):1600-13. PubMed ID: 15105111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast Candida glabrata.
    Nagi M; Tanabe K; Nakayama H; Ueno K; Yamagoe S; Umeyama T; Ohno H; Miyazaki Y
    Autophagy; 2016 Aug; 12(8):1259-71. PubMed ID: 27347716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Noncanonical DNA Damage Checkpoint Response in a Major Fungal Pathogen.
    Shor E; Garcia-Rubio R; DeGregorio L; Perlin DS
    mBio; 2020 Dec; 11(6):. PubMed ID: 33323516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Candida glabrata Rpn4-like Protein Complements the RPN4 Deletion in Saccharomyces cerevisiae].
    Karpov DS; Grineva EN; Kiseleva SV; Chelarskaya ES; Spasskaya DS; Karpov VL
    Mol Biol (Mosk); 2019; 53(2):274-281. PubMed ID: 31099777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Candida glabrata: a deadly companion?
    Bolotin-Fukuhara M; Fairhead C
    Yeast; 2014 Aug; 31(8):279-88. PubMed ID: 24861573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication.
    Merhej J; Delaveau T; Guitard J; Palancade B; Hennequin C; Garcia M; Lelandais G; Devaux F
    Mol Microbiol; 2015 Jun; 96(5):951-72. PubMed ID: 25732006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation.
    Calcagno AM; Bignell E; Warn P; Jones MD; Denning DW; Mühlschlegel FA; Rogers TR; Haynes K
    Mol Microbiol; 2003 Nov; 50(4):1309-18. PubMed ID: 14622417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of yeast homolog of the mammal BCRP gene coding for riboflavin efflux protein activates vitamin B
    Tsyrulnyk AO; Andreieva YA; Ruchala J; Fayura LR; Dmytruk KV; Fedorovych DV; Sibirny AA
    Yeast; 2020 Sep; 37(9-10):467-473. PubMed ID: 32401376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactive nitrogen species induced catalases promote a novel nitrosative stress tolerance mechanism in Vibrio cholerae.
    Patra SK; Samaddar S; Sinha N; Ghosh S
    Nitric Oxide; 2019 Jul; 88():35-44. PubMed ID: 30981896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multifunctional centromere binding factor 1 is essential for chromosome segregation in the human pathogenic yeast Candida glabrata.
    Stoyan T; Gloeckner G; Diekmann S; Carbon J
    Mol Cell Biol; 2001 Aug; 21(15):4875-88. PubMed ID: 11438645
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Hassan Y; Chew SY; Than LTL
    J Fungi (Basel); 2021 Aug; 7(8):. PubMed ID: 34436206
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.