These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35308459)

  • 1. Transparent Interaction Based Learning for Human-Robot Collaboration.
    Bagheri E; De Winter J; Vanderborght B
    Front Robot AI; 2022; 9():754955. PubMed ID: 35308459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impacts of Human-Cobot Collaboration on Perceived Cognitive Load and Usability during an Industrial Task: An Exploratory Experiment.
    Fournier É; Kilgus D; Landry A; Hmedan B; Pellier D; Fiorino H; Jeoffrion C
    IISE Trans Occup Ergon Hum Factors; 2022; 10(2):83-90. PubMed ID: 35485174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Relationships of Human-Cobot Interaction Fluency with Job Performance and Job Satisfaction among Cobot Operators-The Moderating Role of Workload.
    Paliga M
    Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36982018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Explaining Social Robots: An Explainable Behavior Generation Architecture for Human-Robot Interaction.
    Stange S; Hassan T; Schröder F; Konkol J; Kopp S
    Front Artif Intell; 2022; 5():866920. PubMed ID: 35573901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. My Caregiver the Cobot: Comparing Visualization Techniques to Effectively Communicate Cobot Perception to People with Physical Impairments.
    Pascher M; Kronhardt K; Franzen T; Gruenefeld U; Schneegass S; Gerken J
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of interdependence and a transparent or explainable communication style on human-robot teamwork.
    Verhagen RS; Neerincx MA; Tielman ML
    Front Robot AI; 2022; 9():993997. PubMed ID: 36158603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emotion-Driven Analysis and Control of Human-Robot Interactions in Collaborative Applications.
    Toichoa Eyam A; Mohammed WM; Martinez Lastra JL
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the Impact of Human-Cobot Collaborative Manufacturing Implementation on the Occupational Health and Safety and the Quality Requirements.
    Pauliková A; Gyurák Babeľová Z; Ubárová M
    Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33671204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinating Shared Tasks in Human-Robot Collaboration by Commands.
    Angleraud A; Mehman Sefat A; Netzev M; Pieters R
    Front Robot AI; 2021; 8():734548. PubMed ID: 34738018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobot Motion Planning Algorithm for Ensuring Human Safety Based on Behavioral Dynamics.
    Liu B; Fu W; Wang W; Li R; Gao Z; Peng L; Du H
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perceived safety in human-cobot interaction for fixed-path and real-time motion planning algorithms.
    Tusseyeva I; Oleinikov A; Sandygulova A; Rubagotti M
    Sci Rep; 2022 Nov; 12(1):20438. PubMed ID: 36443369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Egocentric Gesture Recognition Using 3D Convolutional Neural Networks for the Spatiotemporal Adaptation of Collaborative Robots.
    Papanagiotou D; Senteri G; Manitsaris S
    Front Neurorobot; 2021; 15():703545. PubMed ID: 34887740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring Trust From Users' Behaviours; Agents' Predictability Positively Affects Trust, Task Performance and Cognitive Load in Human-Agent Real-Time Collaboration.
    Daronnat S; Azzopardi L; Halvey M; Dubiel M
    Front Robot AI; 2021; 8():642201. PubMed ID: 34307467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning Semantics of Gestural Instructions for Human-Robot Collaboration.
    Shukla D; Erkent Ö; Piater J
    Front Neurorobot; 2018; 12():7. PubMed ID: 29615888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trust Dynamics and Verbal Assurances in Human Robot Physical Collaboration.
    Alhaji B; Prilla M; Rausch A
    Front Artif Intell; 2021; 4():703504. PubMed ID: 34355165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. More Than a Feeling-Interrelation of Trust Layers in Human-Robot Interaction and the Role of User Dispositions and State Anxiety.
    Miller L; Kraus J; Babel F; Baumann M
    Front Psychol; 2021; 12():592711. PubMed ID: 33912098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing the effects of human-aware motion planning on close-proximity human-robot collaboration.
    Lasota PA; Shah JA
    Hum Factors; 2015 Feb; 57(1):21-33. PubMed ID: 25790568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation and Transfer of Robot Motion Policies for Close Proximity Human-Robot Interaction.
    Hoang Dinh K; Oguz OS; Elsayed M; Wollherr D
    Front Robot AI; 2019; 6():69. PubMed ID: 33501084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Channel Interactive Reinforcement Learning for Sequential Tasks.
    Koert D; Kircher M; Salikutluk V; D'Eramo C; Peters J
    Front Robot AI; 2020; 7():97. PubMed ID: 33501264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing a Robot Tutee to a Human Tutee in a Learning-By-Teaching Scenario with Children.
    Serholt S; Ekström S; Küster D; Ljungblad S; Pareto L
    Front Robot AI; 2022; 9():836462. PubMed ID: 35265673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.