These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 35308565)

  • 1. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry?
    Le Ray D; Guayasamin M
    Front Syst Neurosci; 2022; 16():828532. PubMed ID: 35308565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vestibular compensation: role of visual motion cues in the recovery of posturo-kinetic functions in the cat.
    Zennou-Azogui Y; Xerri C; Leonard J; Tighilet B
    Behav Brain Res; 1996 Jan; 74(1-2):65-77. PubMed ID: 8851916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xenopus laevis: an ideal experimental model for studying the developmental dynamics of neural network assembly and sensory-motor computations.
    Straka H; Simmers J
    Dev Neurobiol; 2012 Apr; 72(4):649-63. PubMed ID: 21834082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.
    Beyeler A; Rao G; Ladepeche L; Jacques A; Simmers J; Le Ray D
    PLoS One; 2013; 8(8):e71013. PubMed ID: 23951071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated technology for evaluation of brain function and neural plasticity.
    Rossini PM; Dal Forno G
    Phys Med Rehabil Clin N Am; 2004 Feb; 15(1):263-306. PubMed ID: 15029909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Betahistine dihydrochloride treatment facilitates vestibular compensation in the cat.
    Tighilet B; Leonard J; Lacour M
    J Vestib Res; 1995; 5(1):53-66. PubMed ID: 7711948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural bases of goal-directed locomotion in vertebrates--an overview.
    Grillner S; Wallén P; Saitoh K; Kozlov A; Robertson B
    Brain Res Rev; 2008 Jan; 57(1):2-12. PubMed ID: 17916382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory Activation of Command Cells for Locomotion and Modulatory Mechanisms: Lessons from Lampreys.
    Daghfous G; Green WW; Alford ST; Zielinski BS; Dubuc R
    Front Neural Circuits; 2016; 10():18. PubMed ID: 27047342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chasing central nervous system plasticity: the brainstem's contribution to locomotor recovery in rats with spinal cord injury.
    Zörner B; Bachmann LC; Filli L; Kapitza S; Gullo M; Bolliger M; Starkey ML; Röthlisberger M; Gonzenbach RR; Schwab ME
    Brain; 2014 Jun; 137(Pt 6):1716-32. PubMed ID: 24736305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.
    Le Gal JP; Juvin L; Cardoit L; Morin D
    J Neurosci; 2016 Jan; 36(3):926-37. PubMed ID: 26791221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotion and dynamic posture: neuro-evolutionary basis of bipedal gait.
    Guillaud E; Seyres P; Barrière G; Jecko V; Bertrand SS; Cazalets JR
    Neurophysiol Clin; 2020 Nov; 50(6):467-477. PubMed ID: 33176989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Sensory and Motor Integration for Recovery of Movement After CNS Injury.
    Asan AS; McIntosh JR; Carmel JB
    Front Neurosci; 2021; 15():791824. PubMed ID: 35126040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion.
    Büschges A
    J Neurophysiol; 2005 Mar; 93(3):1127-35. PubMed ID: 15738270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion.
    Hägglund M; Dougherty KJ; Borgius L; Itohara S; Iwasato T; Kiehn O
    Proc Natl Acad Sci U S A; 2013 Jul; 110(28):11589-94. PubMed ID: 23798384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nervous mechanisms of locomotion in different directions.
    Deliagina TG; Musienko PE; Zelenin PV
    Curr Opin Physiol; 2019 Apr; 8():7-13. PubMed ID: 31468024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of human locomotion.
    Lacquaniti F; Ivanenko YP; Zago M
    Curr Opin Neurobiol; 2012 Oct; 22(5):822-8. PubMed ID: 22498713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light on a sensory interface linking the cerebrospinal fluid to motor circuits in vertebrates.
    Djenoune L; Wyart C
    J Neurogenet; 2017 Sep; 31(3):113-127. PubMed ID: 28789587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor asymmetries in preterm infants at 18 weeks corrected age and outcomes at 1 year.
    de Groot L; Hopkins B; Touwen B
    Early Hum Dev; 1997 Apr; 48(1-2):35-46. PubMed ID: 9131305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlations between neurograms and locomotor drive potentials in motoneurons during fictive locomotion: implications for the organization of locomotor commands.
    Hamm TM; Trank TV; Turkin VV
    Prog Brain Res; 1999; 123():331-9. PubMed ID: 10635728
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 23.