These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 35308565)

  • 21. Adaptive motor control in crayfish.
    Cattaert D; Le Ray D
    Prog Neurobiol; 2001 Feb; 63(2):199-240. PubMed ID: 11124446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between intrinsic membrane and emerging network properties determine signal processing in central vestibular neurons.
    Rössert C; Straka H
    Exp Brain Res; 2011 May; 210(3-4):437-49. PubMed ID: 21374082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination.
    Aoi S; Funato T
    Neurosci Res; 2016 Mar; 104():88-95. PubMed ID: 26616311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Encoding and decoding of reticulospinal commands.
    Deliagina TG; Zelenin PV; Orlovsky GN
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):166-77. PubMed ID: 12589915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of posture and locomotion: an interplay of endogenously generated activities and neurotrophic actions by descending pathways.
    Vinay L; Brocard F; Clarac F; Norreel JC; Pearlstein E; Pflieger JF
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):118-29. PubMed ID: 12589911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion.
    Grillner S; El Manira A
    Physiol Rev; 2020 Jan; 100(1):271-320. PubMed ID: 31512990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of multiple motor segments for the elaboration of locomotion: role of the fastigial nucleus of the cerebellum.
    Mori S; Nakajima K; Mori F; Matsuyama K
    Prog Brain Res; 2004; 143():341-51. PubMed ID: 14653178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Body side-specific control of motor activity during turning in a walking animal.
    Gruhn M; Rosenbaum P; Bockemühl T; Büschges A
    Elife; 2016 Apr; 5():. PubMed ID: 27130731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development, functional organization, and evolution of vertebrate axial motor circuits.
    D'Elia KP; Dasen JS
    Neural Dev; 2018 Jun; 13(1):10. PubMed ID: 29855378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interhemispheric nigrothalamic projections and behavioral recovery following turning behavior induced by unilateral peripheral sensory and motor restriction.
    Sabel BA; Pritzel M; Morgan S; Huston JP
    Exp Neurol; 1984 Jan; 83(1):49-61. PubMed ID: 6690324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke.
    Clark DJ; Ting LH; Zajac FE; Neptune RR; Kautz SA
    J Neurophysiol; 2010 Feb; 103(2):844-57. PubMed ID: 20007501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasticity in the development of handedness: evidence from normal development and early asymmetric brain injury.
    Corbetta D; Williams J; Snapp-Childs W
    Dev Psychobiol; 2006 Sep; 48(6):460-71. PubMed ID: 16886184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reorganization of the human central nervous system.
    Schalow G; Zäch GA
    Gen Physiol Biophys; 2000 Oct; 19 Suppl 1():11-240. PubMed ID: 11252267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modular organization of murine locomotor pattern in the presence and absence of sensory feedback from muscle spindles.
    Santuz A; Akay T; Mayer WP; Wells TL; Schroll A; Arampatzis A
    J Physiol; 2019 Jun; 597(12):3147-3165. PubMed ID: 30916787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Postural dependence of human locomotion during gait initiation.
    Mille ML; Simoneau M; Rogers MW
    J Neurophysiol; 2014 Dec; 112(12):3095-103. PubMed ID: 25231611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional regeneration and recovery of locomotor activity in spinally transected lamprey.
    McClellan AD
    J Exp Zool; 1992 Mar; 261(3):274-87. PubMed ID: 1629660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential Contribution of V0 Interneurons to Execution of Rhythmic and Nonrhythmic Motor Behaviors.
    Zelenin PV; Vemula MG; Lyalka VF; Kiehn O; Talpalar AE; Deliagina TG
    J Neurosci; 2021 Apr; 41(15):3432-3445. PubMed ID: 33637562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects.
    Ivanenko YP; Poppele RE; Lacquaniti F
    Brain Res Bull; 2009 Jan; 78(1):13-21. PubMed ID: 19070781
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.