These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 35308565)

  • 41. Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects.
    Ivanenko YP; Poppele RE; Lacquaniti F
    Brain Res Bull; 2009 Jan; 78(1):13-21. PubMed ID: 19070781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Asymmetries in postural control and locomotion in chimpanzees (Pan troglodytes).
    Morcillo A; Fernandez-Carriba S; Loeches A
    Am J Primatol; 2006 Aug; 68(8):802-11. PubMed ID: 16847974
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Resilience of neural networks for locomotion.
    Haspel G; Severi KE; Fauci LJ; Cohen N; Tytell ED; Morgan JR
    J Physiol; 2021 Aug; 599(16):3825-3840. PubMed ID: 34187088
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of operation of spinal locomotor networks activated by supraspinal commands and by epidural stimulation of the spinal cord in cats.
    Musienko PE; Lyalka VF; Gorskii OV; Merkulyeva N; Gerasimenko YP; Deliagina TG; Zelenin PV
    J Physiol; 2020 Aug; 598(16):3459-3483. PubMed ID: 32445488
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Load-regulating mechanisms in gait and posture: comparative aspects.
    Duysens J; Clarac F; Cruse H
    Physiol Rev; 2000 Jan; 80(1):83-133. PubMed ID: 10617766
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural mechanisms generating locomotion studied in mammalian brain stem-spinal cord in vitro.
    Smith JC; Feldman JL; Schmidt BJ
    FASEB J; 1988 Apr; 2(7):2283-8. PubMed ID: 2450802
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human brain plasticity: evidence from sensory deprivation and altered language experience.
    Neville H; Bavelier D
    Prog Brain Res; 2002; 138():177-88. PubMed ID: 12432770
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The spinal motor system in early vertebrates and some of its evolutionary changes.
    Fetcho JR
    Brain Behav Evol; 1992; 40(2-3):82-97. PubMed ID: 1422809
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Some historical reflections on the neural control of locomotion.
    Clarac F
    Brain Res Rev; 2008 Jan; 57(1):13-21. PubMed ID: 17919733
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasticity and modular control of locomotor patterns in neurological disorders with motor deficits.
    Ivanenko YP; Cappellini G; Solopova IA; Grishin AA; Maclellan MJ; Poppele RE; Lacquaniti F
    Front Comput Neurosci; 2013 Sep; 7():123. PubMed ID: 24032016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rhythmogenesis in axial locomotor networks: an interspecies comparison.
    Ryczko D; Dubuc R; Cabelguen JM
    Prog Brain Res; 2010; 187():189-211. PubMed ID: 21111209
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview.
    Rangasamy SB
    Synapse; 2013 Jul; 67(7):427-53. PubMed ID: 23401170
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro CNS preparations: unique approaches to the study of command and pattern generation systems in motor control.
    McClellan AD
    J Neurosci Methods; 1987 Oct; 21(2-4):251-64. PubMed ID: 3316853
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Left-right side-specific endocrine signaling complements neural pathways to mediate acute asymmetric effects of brain injury.
    Lukoyanov N; Watanabe H; Carvalho LS; Kononenko O; Sarkisyan D; Zhang M; Andersen MS; Lukoyanova EA; Galatenko V; Tonevitsky A; Bazov I; Iakovleva T; Schouenborg J; Bakalkin G
    Elife; 2021 Aug; 10():. PubMed ID: 34372969
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Gigantocellular Reticular Nucleus Plays a Significant Role in Locomotor Recovery after Incomplete Spinal Cord Injury.
    Engmann AK; Bizzozzero F; Schneider MP; Pfyffer D; Imobersteg S; Schneider R; Hofer AS; Wieckhorst M; Schwab ME
    J Neurosci; 2020 Oct; 40(43):8292-8305. PubMed ID: 32978289
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time course of functional changes in locomotor and sensory systems after spinal cord lesions in lamprey.
    Becker M; Parker D
    J Neurophysiol; 2019 Jun; 121(6):2323-2335. PubMed ID: 31017839
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Maturation of the Locomotor Circuitry in Children With Cerebral Palsy.
    Cappellini G; Sylos-Labini F; Dewolf AH; Solopova IA; Morelli D; Lacquaniti F; Ivanenko Y
    Front Bioeng Biotechnol; 2020; 8():998. PubMed ID: 32974319
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Locomotor corollary activation of trigeminal motoneurons: coupling of discrete motor behaviors.
    Hänzi S; Banchi R; Straka H; Chagnaud BP
    J Exp Biol; 2015 Jun; 218(Pt 11):1748-58. PubMed ID: 26041033
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assembly and function of spinal circuits for motor control.
    Catela C; Shin MM; Dasen JS
    Annu Rev Cell Dev Biol; 2015; 31():669-98. PubMed ID: 26393773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.