BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 3530899)

  • 21. Vitamin K 2,3-epoxide reductase and the vitamin K-dependent gamma-carboxylation system.
    Wallin R; Sane DC; Hutson SM
    Thromb Res; 2002 Nov; 108(4):221-6. PubMed ID: 12617985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vitamin K metabolism and vitamin K1 status in human liver samples: a search for inter-individual differences in warfarin sensitivity.
    Thijssen HH; Drittij-Reijnders MJ
    Br J Haematol; 1993 Aug; 84(4):681-5. PubMed ID: 8217828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2004 Jun; 279(24):25276-83. PubMed ID: 15075329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vitamin K-dependent carboxylase: partial purification of the enzyme by antibody affinity techniques.
    Harbeck MC; Cheung AY; Suttie JW
    Thromb Res; 1989 Oct; 56(2):317-23. PubMed ID: 2617472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lapachol inhibition of vitamin K epoxide reductase and vitamin K quinone reductase.
    Preusch PC; Suttie JW
    Arch Biochem Biophys; 1984 Nov; 234(2):405-12. PubMed ID: 6497379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vitamin K-antagonistic effect of plastoquinone and ubiquinone derivatives in vitro.
    Saupe J; Ronden JE; Soute BA; Vermeer C
    FEBS Lett; 1994 Jan; 338(2):143-6. PubMed ID: 8307171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence that warfarin anticoagulant action involves two distinct reductase activities.
    Fasco MJ; Hildebrandt EF; Suttie JW
    J Biol Chem; 1982 Oct; 257(19):11210-2. PubMed ID: 6811577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of warfarin resistance and liver microsomal vitamin K epoxide reductase activity in rats.
    MacNicoll AD
    Biochim Biophys Acta; 1985 May; 840(1):13-20. PubMed ID: 3995080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane.
    Cain D; Hutson SM; Wallin R
    J Biol Chem; 1997 Nov; 272(46):29068-75. PubMed ID: 9360981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Warfarin poisoning and vitamin K antagonism in rat and human liver. Design of a system in vitro that mimics the situation in vivo.
    Wallin R; Martin LF
    Biochem J; 1987 Jan; 241(2):389-96. PubMed ID: 3593198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of fluoro- and hydroxy-derivatives of vitamin K as substrates or inhibitors of the liver microsomal vitamin K-dependent carboxylase.
    Grossman CP; Suttie JW
    Biofactors; 1992 Jan; 3(3):205-9. PubMed ID: 1599614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disulfide-dependent protein folding is linked to operation of the vitamin K cycle in the endoplasmic reticulum. A protein disulfide isomerase-VKORC1 redox enzyme complex appears to be responsible for vitamin K1 2,3-epoxide reduction.
    Wajih N; Hutson SM; Wallin R
    J Biol Chem; 2007 Jan; 282(4):2626-35. PubMed ID: 17124179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vitamin K-dependent carboxylation in the developing rat: evidence for a similar mechanism of action of warfarin in fetal and adult livers.
    Wallin R
    Pediatr Res; 1989 Oct; 26(4):370-6. PubMed ID: 2508052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The vitamin K-dependent carboxylation reaction.
    Vermeer C
    Mol Cell Biochem; 1984; 61(1):17-35. PubMed ID: 6369112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of vitamin K-dependent carboxylase in vitro by cefamandole and its structural analogs.
    Uotila L; Suttie JW
    J Infect Dis; 1983 Sep; 148(3):571-8. PubMed ID: 6619579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutagenesis of vitamin K-dependent carboxylase demonstrates a carboxyl terminus-mediated interaction with vitamin K hydroquinone.
    Roth DA; Whirl ML; Velazquez-Estades LJ; Walsh CT; Furie B; Furie BC
    J Biol Chem; 1995 Mar; 270(10):5305-11. PubMed ID: 7890642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and mechanism of action of the vitamin K-dependent gamma-glutamyl carboxylase: recent advances from mutagenesis studies.
    Furie BC; Furie B
    Thromb Haemost; 1997 Jul; 78(1):595-8. PubMed ID: 9198222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain.
    Caspers M; Czogalla KJ; Liphardt K; Müller J; Westhofen P; Watzka M; Oldenburg J
    Thromb Res; 2015 May; 135(5):977-83. PubMed ID: 25747820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pharmacogenetics of target genes across the warfarin pharmacological pathway.
    Lal S; Jada SR; Xiang X; Lim WT; Lee EJ; Chowbay B
    Clin Pharmacokinet; 2006; 45(12):1189-200. PubMed ID: 17112295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of N-methyl-thiotetrazole on vitamin K epoxide reductase.
    Creedon KA; Suttie JW
    Thromb Res; 1986 Oct; 44(2):147-53. PubMed ID: 3787564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.