BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35309107)

  • 1. Predicting the trabecular bone apparent stiffness tensor with spherical convolutional neural networks.
    Sinzinger F; van Kerkvoorde J; Pahr DH; Moreno R
    Bone Rep; 2022 Jun; 16():101179. PubMed ID: 35309107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors.
    Moreno R; Smedby Ö; Pahr DH
    Biomech Model Mechanobiol; 2016 Aug; 15(4):831-44. PubMed ID: 26341838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can DXA image-based deep learning model predict the anisotropic elastic behavior of trabecular bone?
    Xiao P; Haque E; Zhang T; Dong XN; Huang Y; Wang X
    J Mech Behav Biomed Mater; 2021 Dec; 124():104834. PubMed ID: 34544016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Not only stiffness, but also yield strength of the trabecular structure determined by non-linear µFE is best predicted by bone volume fraction and fabric tensor.
    Musy SN; Maquer G; Panyasantisuk J; Wandel J; Zysset PK
    J Mech Behav Biomed Mater; 2017 Jan; 65():808-813. PubMed ID: 27788473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of cortical shell and trabecular fabric in finite element analysis of the human vertebral body.
    Chevalier Y; Pahr D; Zysset PK
    J Biomech Eng; 2009 Nov; 131(11):111003. PubMed ID: 20353254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.
    Maquer G; Musy SN; Wandel J; Gross T; Zysset PK
    J Bone Miner Res; 2015 Jun; 30(6):1000-8. PubMed ID: 25529534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone.
    Liu XS; Zhang XH; Sekhon KK; Adams MF; McMahon DJ; Bilezikian JP; Shane E; Guo XE
    J Bone Miner Res; 2010 Apr; 25(4):746-56. PubMed ID: 19775199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study.
    Nazemi SM; Cooper DM; Johnston JD
    Med Eng Phys; 2016 Sep; 38(9):978-87. PubMed ID: 27372175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of high-resolution in vivo micro magnetic resonance imaging for measurements of microstructural and mechanical properties of human distal tibial bone.
    Liu XS; Zhang XH; Rajapakse CS; Wald MJ; Magland J; Sekhon KK; Adam MF; Sajda P; Wehrli FW; Guo XE
    J Bone Miner Res; 2010 Sep; 25(9):2039-50. PubMed ID: 20499379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties.
    Majumdar S; Kothari M; Augat P; Newitt DC; Link TM; Lin JC; Lang T; Lu Y; Genant HK
    Bone; 1998 May; 22(5):445-54. PubMed ID: 9600777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.
    Nazemi SM; Amini M; Kontulainen SA; Milner JS; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    Clin Biomech (Bristol, Avon); 2017 Jan; 41():1-8. PubMed ID: 27842233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D image registration is critical to ensure accurate detection of longitudinal changes in trabecular bone density, microstructure, and stiffness measurements in rat tibiae by in vivo microcomputed tomography (μCT).
    Lan S; Luo S; Huh BK; Chandra A; Altman AR; Qin L; Liu XS
    Bone; 2013 Sep; 56(1):83-90. PubMed ID: 23727434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principal trabecular structural orientation predicted by quantitative ultrasound is strongly correlated with μFEA determined anisotropic apparent stiffness.
    Lin L; Oon HY; Lin W; Qin YX
    Biomech Model Mechanobiol; 2014 Oct; 13(5):961-71. PubMed ID: 24419558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic Anisotropy of Trabecular Bone in the Elderly Human Vertebra.
    Unnikrishnan GU; Gallagher JA; Hussein AI; Barest GD; Morgan EF
    J Biomech Eng; 2015 Nov; 137(11):114503. PubMed ID: 26300326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia.
    Nazemi SM; Kalajahi SMH; Cooper DML; Kontulainen SA; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    J Biomech; 2017 Jul; 59():101-108. PubMed ID: 28601243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. μCT-based trabecular anisotropy can be reproducibly computed from HR-pQCT scans using the triangulated bone surface.
    Hosseini HS; Maquer G; Zysset PK
    Bone; 2017 Apr; 97():114-120. PubMed ID: 28109918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution peripheral quantitative computed tomography (HR-pQCT) can assess microstructural and biomechanical properties of both human distal radius and tibia: Ex vivo computational and experimental validations.
    Zhou B; Wang J; Yu YE; Zhang Z; Nawathe S; Nishiyama KK; Rosete FR; Keaveny TM; Shane E; Guo XE
    Bone; 2016 May; 86():58-67. PubMed ID: 26924718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.