BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35309723)

  • 1. Design, Modeling, and Visual Learning-Based Control of Soft Robotic Fish Driven by Super-Coiled Polymers.
    Rajendran SK; Zhang F
    Front Robot AI; 2021; 8():809427. PubMed ID: 35309723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two degree-of-freedom robotic eye: design, modeling, and learning-based control in foveation and smooth pursuit.
    Rajendran SK; Wei Q; Zhang F
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33951619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast-Swimming Soft Robotic Fish Actuated by Bionic Muscle.
    Wang R; Zhang C; Zhang Y; Yang L; Tan W; Qin H; Wang F; Liu L
    Soft Robot; 2024 Feb; ():. PubMed ID: 38407844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and control of an embedded vision guided robotic fish with multiple control surfaces.
    Yu J; Wang K; Tan M; Zhang J
    ScientificWorldJournal; 2014; 2014():631296. PubMed ID: 24688413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicone-layered waterproof electrohydraulic soft actuators for bio-inspired underwater robots.
    Shibuya T; Watanabe S; Shintake J
    Front Robot AI; 2024; 11():1298624. PubMed ID: 38947862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, Implementation, and Observer-based Output Control of a Super-coiled Polymer-Driven Two Degree-of-Freedom Robotic Eye.
    Rajendran SK; Wei Q; Yao N; Zhang F
    IEEE Robot Autom Lett; 2023 Sep; 8(9):5958-5965. PubMed ID: 37877111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot motor learning shows emergence of frequency-modulated, robust swimming with an invariant Strouhal number.
    Deng H; Li D; Nitroy C; Wertz A; Priya S; Cheng B
    J R Soc Interface; 2024 Mar; 21(212):20240036. PubMed ID: 38531411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the influence of head motion on the swimming kinematics of robotic fish.
    Abbaszadeh S; Kiiski Y; Leidhold R; Hoerner S
    Bioinspir Biomim; 2023 Aug; 18(5):. PubMed ID: 37557887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target-Following Control of a Biomimetic Autonomous System Based on Predictive Reinforcement Learning.
    Wang Y; Wang J; Kang S; Yu J
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jelly-Z: swimming performance and analysis of twisted and coiled polymer (TCP) actuated jellyfish soft robot.
    Matharu PS; Gong P; Guntaka KPR; Almubarak Y; Jin Y; Tadesse YT
    Sci Rep; 2023 Jul; 13(1):11086. PubMed ID: 37422482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Modeling of a New Biomimetic Soft Robotic Jellyfish Using IPMC-Based Electroactive Polymers.
    Olsen ZJ; Kim KJ
    Front Robot AI; 2019; 6():112. PubMed ID: 33501127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fuzzy-based collective pitch control for wind turbine via deep reinforcement learning.
    Nabeel A; Lasheen A; Elshafei AL; Aboul Zahab E
    ISA Trans; 2024 May; 148():307-325. PubMed ID: 38599929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Undulatory Swimming Performance Explored With a Biorobotic Fish and Measured by Soft Sensors and Particle Image Velocimetry.
    Schwab F; Wiesemüller F; Mucignat C; Park YL; Lunati I; Kovac M; Jusufi A
    Front Robot AI; 2021; 8():791722. PubMed ID: 35071335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fish-inspired robotic algorithm: mimicking behaviour and communication of schooling fish.
    Connor J; Joordens M; Champion B
    Bioinspir Biomim; 2023 Sep; 18(6):. PubMed ID: 37714177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep CNN-Based Static Modeling of Soft Robots Utilizing Absolute Nodal Coordinate Formulation.
    El-Hussieny H; Hameed IA; Nada AA
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a Shape-Memory-Alloy-Based Carangiform Robotic Fishtail with Improved Forward Thrust.
    Koiri MK; Dubey V; Sharma AK; Chuchala D
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of machine learning methods in soft robotics.
    Kim D; Kim SH; Kim T; Kang BB; Lee M; Park W; Ku S; Kim D; Kwon J; Lee H; Bae J; Park YL; Cho KJ; Jo S
    PLoS One; 2021; 16(2):e0246102. PubMed ID: 33600496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive Online Learning and Robust 3-D Shape Servoing of Continuum and Soft Robots in Unstructured Environments.
    Lu Y; Chen W; Lu B; Zhou J; Chen Z; Dou Q; Liu YH
    Soft Robot; 2024 Apr; 11(2):320-337. PubMed ID: 38324014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salmon behavioural response to robots in an aquaculture sea cage.
    Kruusmaa M; Gkliva R; Tuhtan JA; Tuvikene A; Alfredsen JA
    R Soc Open Sci; 2020 Mar; 7(3):191220. PubMed ID: 32269784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Obstacle Traversal Method for Multiple Robotic Fish Based on Cross-Modal Variational Autoencoders and Imitation Learning.
    Wang R; Wang M; Zhao Q; Gong Y; Zuo L; Zheng X; Gao H
    Biomimetics (Basel); 2024 Apr; 9(4):. PubMed ID: 38667232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.