These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35309983)

  • 1. Effect of Velocity and Contact Stress Area on the Dynamic Behavior of the Spinal Cord Under Different Testing Conditions.
    Jin C; Zhu R; Xu ML; Zheng LD; Zeng HZ; Xie N; Cheng LM
    Front Bioeng Biotechnol; 2022; 10():762555. PubMed ID: 35309983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelasticity of spinal cord and meningeal tissues.
    Ramo NL; Troyer KL; Puttlitz CM
    Acta Biomater; 2018 Jul; 75():253-262. PubMed ID: 29852238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of in vivo and ex vivo viscoelastic behavior of the spinal cord.
    Ramo NL; Shetye SS; Streijger F; Lee JHT; Troyer KL; Kwon BK; Cripton P; Puttlitz CM
    Acta Biomater; 2018 Mar; 68():78-89. PubMed ID: 29288084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hyper-Viscoelastic Continuum-Level Finite Element Model of the Spinal Cord Assessed for Transverse Indentation and Impact Loading.
    Rycman A; McLachlin S; Cronin DS
    Front Bioeng Biotechnol; 2021; 9():693120. PubMed ID: 34458242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromechanical heterogeneity of the rat pia-arachnoid complex.
    Fabris G; M Suar Z; Kurt M
    Acta Biomater; 2019 Dec; 100():29-37. PubMed ID: 31585202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protection of cortex by overlying meninges tissue during dynamic indentation of the adolescent brain.
    MacManus DB; Pierrat B; Murphy JG; Gilchrist MD
    Acta Biomater; 2017 Jul; 57():384-394. PubMed ID: 28501711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex-vivo quantification of ovine pia arachnoid complex biomechanical properties under uniaxial tension.
    Conley Natividad G; Theodossiou SK; Schiele NR; Murdoch GK; Tsamis A; Tanner B; Potirniche G; Mortazavi M; Vorp DA; Martin BA
    Fluids Barriers CNS; 2020 Nov; 17(1):68. PubMed ID: 33183314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tensile mechanical properties of the cervical, thoracic and lumbar porcine spinal meninges.
    Sudres P; Evin M; Wagnac E; Bailly N; Diotalevi L; Melot A; Arnoux PJ; Petit Y
    J Mech Behav Biomed Mater; 2021 Mar; 115():104280. PubMed ID: 33395616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The denticulate ligament - Tensile characterisation and finite element micro-scale model of the structure stabilising spinal cord.
    Polak-Kraśna K; Robak-Nawrocka S; Szotek S; Czyż M; Gheek D; Pezowicz C
    J Mech Behav Biomed Mater; 2019 Mar; 91():10-17. PubMed ID: 30529981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biomechanical behaviors of cervical spinal cord injury related to various bone fragment impact velocities: a finite element study].
    Duan S; Zhu ZQ; Wang KF; Liu CJ; Xu S; Xia WW; Liu HY
    Zhonghua Yi Xue Za Zhi; 2018 Mar; 98(11):837-841. PubMed ID: 29609266
    [No Abstract]   [Full Text] [Related]  

  • 11. Elastic modulus and stress-strain response of human enamel by nano-indentation.
    He LH; Fujisawa N; Swain MV
    Biomaterials; 2006 Aug; 27(24):4388-98. PubMed ID: 16644007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tensile mechanical analysis of anisotropy and velocity dependence of the spinal cord white matter: a biomechanical study.
    Nishida N; Sakuramoto I; Fujii Y; Hutama RY; Jiang F; Ohgi J; Imajo Y; Suzuki H; Funaba M; Chen X; Sakai T
    Neural Regen Res; 2021 Dec; 16(12):2557-2562. PubMed ID: 33907048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of the human spinal cord under the compressive loading.
    Karimi A; Shojaei A; Tehrani P
    J Chem Neuroanat; 2017 Dec; 86():15-18. PubMed ID: 28720407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of white, grey, and pia mater properties on tissue level stresses and strains in the compressed spinal cord.
    Sparrey CJ; Manley GT; Keaveny TM
    J Neurotrauma; 2009 Apr; 26(4):585-95. PubMed ID: 19292657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion Equation between the Drop Height in the New York University Impactor and the Impact Force in the Infinite Horizon Impactor in the Contusion Spinal Cord Injury Model.
    Khuyagbaatar B; Kim K; Kim YH
    J Neurotrauma; 2015 Dec; 32(24):1987-93. PubMed ID: 26058442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis of spinal cord injury in the rat.
    Maikos JT; Qian Z; Metaxas D; Shreiber DI
    J Neurotrauma; 2008 Jul; 25(7):795-816. PubMed ID: 18627257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Sensitive and Fast Fiber Bragg Grating-Based Investigation of the Biomechanical Dynamics of In Vitro Spinal Cord Injuries.
    Mishra SK; Mac-Thiong JM; Wagnac É; Petit Y; Ung B
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33804327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical Behaviors in Three Types of Spinal Cord Injury Mechanisms.
    Khuyagbaatar B; Kim K; Man Park W; Hyuk Kim Y
    J Biomech Eng; 2016 Aug; 138(8):. PubMed ID: 27276391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical indicators of injury severity are decreased with increased thecal sac dimension in a bench-top model of contusion type spinal cord injury.
    Jones CF; Kwon BK; Cripton PA
    J Biomech; 2012 Apr; 45(6):1003-10. PubMed ID: 22349113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical elastic tensile behavior of muscle fiber bundles in traumatic loading events.
    Tamura A; Hongu JI; Matsumoto T
    Clin Biomech (Bristol, Avon); 2019 Oct; 69():184-190. PubMed ID: 31376809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.