These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35310009)

  • 21. Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges.
    Meisterjahn B; Wagner S; von der Kammer F; Hennecke D; Hofmann T
    J Chromatogr A; 2016 Apr; 1440():150-159. PubMed ID: 26948764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new test system for unraveling the effects of soil components on the uptake and toxicity of silver nanoparticles (NM-300K) in simulated pore water.
    McKee MS; Köser J; Focke O; Filser J
    Sci Total Environ; 2019 Jul; 673():613-621. PubMed ID: 30999102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New insights into the enhanced transport of uncoated and polyvinylpyrrolidone-coated silver nanoparticles in saturated porous media by dissolved black carbons.
    Wang K; Zhang Y; Sun B; Yang Y; Xiao B; Zhu L
    Chemosphere; 2021 Nov; 283():131159. PubMed ID: 34144287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry.
    Yang Y; Long CL; Li HP; Wang Q; Yang ZG
    Sci Total Environ; 2016 Sep; 563-564():996-1007. PubMed ID: 26895948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of nanosilver dissolution kinetics and toxicity in an environmentally relevant aqueous medium.
    Harmon AR; Kennedy AJ; Poda AR; Bednar AJ; Chappell MA; Steevens JA
    Environ Toxicol Chem; 2014 Aug; 33(8):1783-91. PubMed ID: 24753094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture.
    Sahu SC; Zheng J; Graham L; Chen L; Ihrie J; Yourick JJ; Sprando RL
    J Appl Toxicol; 2014 Nov; 34(11):1155-66. PubMed ID: 24522958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of myo-inositol hexakisphosphate, ferrihydrite coating, ionic strength and pH on the transport of TiO
    Tang Y; Wang X; Yan Y; Zeng H; Wang G; Tan W; Liu F; Feng X
    Environ Pollut; 2019 Sep; 252(Pt B):1193-1201. PubMed ID: 31252117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size characterization and quantification of silver nanoparticles by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry.
    Bolea E; Jiménez-Lamana J; Laborda F; Castillo JR
    Anal Bioanal Chem; 2011 Nov; 401(9):2723-32. PubMed ID: 21750882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of grain size and structural heterogeneity on the transport and retention of nano-TiO2 in saturated porous media.
    Lv X; Gao B; Sun Y; Dong S; Wu J; Jiang B; Shi X
    Sci Total Environ; 2016 Sep; 563-564():987-95. PubMed ID: 26774131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic resonance imaging reveals detailed spatial and temporal distribution of iron-based nanoparticles transported through water-saturated porous media.
    Cuny L; Herrling MP; Guthausen G; Horn H; Delay M
    J Contam Hydrol; 2015 Nov; 182():51-62. PubMed ID: 26335945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.
    Wang D; Ge L; He J; Zhang W; Jaisi DP; Zhou D
    J Contam Hydrol; 2014 Aug; 164():35-48. PubMed ID: 24926609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport of stabilized engineered silver (Ag) nanoparticles through porous sandstones.
    Neukum C; Braun A; Azzam R
    J Contam Hydrol; 2014 Mar; 158():1-13. PubMed ID: 24389393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mathematical modeling of the transport and dissolution of citrate-stabilized silver nanoparticles in porous media.
    Taghavy A; Mittelman A; Wang Y; Pennell KD; Abriola LM
    Environ Sci Technol; 2013 Aug; 47(15):8499-507. PubMed ID: 23819811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of clay colloids on ciprofloxacin transport in saturated quartz sand porous media under different solution chemistry conditions.
    Zhang H; Lu T; Zhang R; Wang M; Krishnan S; Liu S; Zhou Y; Li D; Qi Z
    Ecotoxicol Environ Saf; 2020 Aug; 199():110754. PubMed ID: 32446105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm.
    Tripathi S; Champagne D; Tufenkji N
    Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity.
    Compère F; Porel G; Delay F
    J Contam Hydrol; 2001 May; 49(1-2):1-21. PubMed ID: 11351511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection, size characterization and quantification of silver nanoparticles in consumer products by particle collision coulometry.
    Hernández D; Vidal JC; Laborda F; Pérez-Arantegui J; Giménez-Ingalaturre AC; Castillo JR
    Mikrochim Acta; 2021 Jan; 188(1):12. PubMed ID: 33389212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter.
    Li C; Hassan A; Palmai M; Xie Y; Snee PT; Powell BA; Murdoch LC; Darnault CJG
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8050-8073. PubMed ID: 33051847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transport, retention, and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impact of natural organic matters and electrolyte.
    Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z
    Environ Pollut; 2017 Oct; 229():49-59. PubMed ID: 28577382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adverse effects of nanosilver on human health and the environment.
    Rezvani E; Rafferty A; McGuinness C; Kennedy J
    Acta Biomater; 2019 Aug; 94():145-159. PubMed ID: 31125729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.