These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35310483)
1. An engineered third electrostatic constriction of aerolysin to manipulate heterogeneously charged peptide transport. Niu H; Li MY; Ying YL; Long YT Chem Sci; 2022 Feb; 13(8):2456-2461. PubMed ID: 35310483 [TBL] [Abstract][Full Text] [Related]
2. Correction: An engineered third electrostatic constriction of aerolysin to manipulate heterogeneously charged peptide transport. Niu H; Li MY; Ying YL; Long YT Chem Sci; 2022 Jun; 13(21):6429. PubMed ID: 35733890 [TBL] [Abstract][Full Text] [Related]
3. Controlling Electroosmosis in Nanopores Without Altering the Nanopore Sensing Region. Baldelli M; Di Muccio G; Sauciuc A; Morozzo Della Rocca B; Viola F; Balme S; Bonini A; Maglia G; Chinappi M Adv Mater; 2024 Aug; 36(33):e2401761. PubMed ID: 38860821 [TBL] [Abstract][Full Text] [Related]
4. Enhanced identification of Tau acetylation and phosphorylation with an engineered aerolysin nanopore. Huo MZ; Hu ZL; Ying YL; Long YT Proteomics; 2022 Mar; 22(5-6):e2100041. PubMed ID: 34545670 [TBL] [Abstract][Full Text] [Related]
5. [Single-molecule electrophoresis: renewed understanding of nanopore electrochemistry]. Zhang WW; Ying YL; Long YT Se Pu; 2020 Sep; 38(9):993-998. PubMed ID: 34213265 [TBL] [Abstract][Full Text] [Related]
6. Single-Molecule Study of Peptides with the Same Amino Acid Composition but Different Sequences by Using an Aerolysin Nanopore. Hu F; Angelov B; Li S; Li N; Lin X; Zou A Chembiochem; 2020 Sep; 21(17):2467-2473. PubMed ID: 32274877 [TBL] [Abstract][Full Text] [Related]
7. A lithium-ion-active aerolysin nanopore for effectively trapping long single-stranded DNA. Hu ZL; Li MY; Liu SC; Ying YL; Long YT Chem Sci; 2019 Jan; 10(2):354-358. PubMed ID: 30746084 [TBL] [Abstract][Full Text] [Related]
8. Identification of Essential Sensitive Regions of the Aerolysin Nanopore for Single Oligonucleotide Analysis. Wang YQ; Li MY; Qiu H; Cao C; Wang MB; Wu XY; Huang J; Ying YL; Long YT Anal Chem; 2018 Jul; 90(13):7790-7794. PubMed ID: 29882404 [TBL] [Abstract][Full Text] [Related]
9. β-Barrel Nanopores with an Acidic-Aromatic Sensing Region Identify Proteinogenic Peptides at Low pH. Versloot RCA; Straathof SAP; Stouwie G; Tadema MJ; Maglia G ACS Nano; 2022 May; 16(5):7258-7268. PubMed ID: 35302739 [TBL] [Abstract][Full Text] [Related]
10. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Ouldali H; Sarthak K; Ensslen T; Piguet F; Manivet P; Pelta J; Behrends JC; Aksimentiev A; Oukhaled A Nat Biotechnol; 2020 Feb; 38(2):176-181. PubMed ID: 31844293 [TBL] [Abstract][Full Text] [Related]
11. Molecular Insights into Distinct Detection Properties of α-Hemolysin, MspA, CsgG, and Aerolysin Nanopore Sensors. Zhou W; Qiu H; Guo Y; Guo W J Phys Chem B; 2020 Mar; 124(9):1611-1618. PubMed ID: 32027510 [TBL] [Abstract][Full Text] [Related]
12. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis. Boukhet M; Piguet F; Ouldali H; Pastoriza-Gallego M; Pelta J; Oukhaled A Nanoscale; 2016 Nov; 8(43):18352-18359. PubMed ID: 27762420 [TBL] [Abstract][Full Text] [Related]
13. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids. Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305 [TBL] [Abstract][Full Text] [Related]
14. Controlling DNA Fragments Translocation across Nanopores with the Synergic Use of Site-Directed Mutagenesis, pH-Dependent Charge Tuning, and Electroosmotic Flow. Mereuta L; Bhatti H; Asandei A; Cimpanu A; Ying YL; Long YT; Luchian T ACS Appl Mater Interfaces; 2024 Jul; 16(30):40100-40110. PubMed ID: 39038810 [TBL] [Abstract][Full Text] [Related]
15. Protein Deceleration and Sequencing Using Si Si W; Zhang Z; Chen J; Wu G; Zhang Y; Sha J Chemphyschem; 2024 Apr; 25(7):e202300866. PubMed ID: 38267372 [TBL] [Abstract][Full Text] [Related]
16. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis. Cao C; Long YT Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650 [TBL] [Abstract][Full Text] [Related]
17. Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores. Cao C; Cirauqui N; Marcaida MJ; Buglakova E; Duperrex A; Radenovic A; Dal Peraro M Nat Commun; 2019 Oct; 10(1):4918. PubMed ID: 31664022 [TBL] [Abstract][Full Text] [Related]
18. Rationally Designed Sensing Selectivity and Sensitivity of an Aerolysin Nanopore via Site-Directed Mutagenesis. Wang YQ; Cao C; Ying YL; Li S; Wang MB; Huang J; Long YT ACS Sens; 2018 Apr; 3(4):779-783. PubMed ID: 29619834 [TBL] [Abstract][Full Text] [Related]
19. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Piguet F; Ouldali H; Pastoriza-Gallego M; Manivet P; Pelta J; Oukhaled A Nat Commun; 2018 Mar; 9(1):966. PubMed ID: 29511176 [TBL] [Abstract][Full Text] [Related]
20. Aerolysin nanopore-based identification of proteinogenic amino acids using a bipolar peptide probe. Ge Y; Cui M; Zhang Q; Wang Y; Xi D Nanoscale Adv; 2022 Sep; 4(18):3883-3891. PubMed ID: 36133334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]