BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35310493)

  • 1. A system for artificial light signal transduction
    Yang H; Du S; Ye Z; Wang X; Yan Z; Lian C; Bao C; Zhu L
    Chem Sci; 2022 Feb; 13(8):2487-2494. PubMed ID: 35310493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled membrane translocation provides a mechanism for signal transduction and amplification.
    Langton MJ; Keymeulen F; Ciaccia M; Williams NH; Hunter CA
    Nat Chem; 2017 May; 9(5):426-430. PubMed ID: 28430205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a synthetic signal transduction system in plants.
    Morey KJ; Antunes MS; Albrecht KD; Bowen TA; Troupe JF; Havens KL; Medford JI
    Methods Enzymol; 2011; 497():581-602. PubMed ID: 21601104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triggered Release from Lipid Bilayer Vesicles by an Artificial Transmembrane Signal Transduction System.
    Langton MJ; Scriven LM; Williams NH; Hunter CA
    J Am Chem Soc; 2017 Nov; 139(44):15768-15773. PubMed ID: 28876061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled dimerization of artificial membrane receptors for transmembrane signal transduction.
    Chen H; Zhou L; Li C; He X; Huang J; Yang X; Shi H; Wang K; Liu J
    Chem Sci; 2021 May; 12(23):8224-8230. PubMed ID: 34194713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-controlled artificial transmembrane signal transduction for 'ON/OFF'-switchable transphosphorylation of an RNA model substrate.
    Hou J; Guo J; Yan T; Liu S; Zang M; Wang L; Xu J; Luo Q; Wang T; Liu J
    Chem Sci; 2023 Jun; 14(22):6039-6044. PubMed ID: 37293632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-Based Artificial Signaling System Mimicking the Dimerization of Receptors for Signal Transduction and Amplification.
    Liu G; Huang S; Liu X; Chen W; Ma X; Cao S; Wang L; Chen L; Yang H
    Anal Chem; 2021 Oct; 93(41):13807-13814. PubMed ID: 34613712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition-Controlled Membrane Translocation for Signal Transduction across Lipid Bilayers.
    Langton MJ; Williams NH; Hunter CA
    J Am Chem Soc; 2017 May; 139(18):6461-6466. PubMed ID: 28462993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In search of a primitive signaling code.
    Maraldi NM
    Biosystems; 2019 Sep; 183():103984. PubMed ID: 31201829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA nanostructures interacting with lipid bilayer membranes.
    Langecker M; Arnaut V; List J; Simmel FC
    Acc Chem Res; 2014 Jun; 47(6):1807-15. PubMed ID: 24828105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocontrolled nanoparticle delivery systems for biomedical applications.
    Bansal A; Zhang Y
    Acc Chem Res; 2014 Oct; 47(10):3052-60. PubMed ID: 25137555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetics - Bringing light into the darkness of mammalian signal transduction.
    Mühlhäuser WW; Fischer A; Weber W; Radziwill G
    Biochim Biophys Acta Mol Cell Res; 2017 Feb; 1864(2):280-292. PubMed ID: 27845208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocell design through modular compartmentalization.
    Miller D; Booth PJ; Seddon JM; Templer RH; Law RV; Woscholski R; Ces O; Barter LM
    J R Soc Interface; 2013 Oct; 10(87):20130496. PubMed ID: 23925982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding and Unfolding of a Fully Synthetic Transmembrane Receptor for ON/OFF Signal Transduction.
    Pang S; Liu J; Li T; Ye K; Yan Z; Zhao L; Bao C
    J Am Chem Soc; 2023 Sep; 145(38):20761-20766. PubMed ID: 37699413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Lipid-Based Droplet Processor for Parallel Chemical Signals.
    Cazimoglu I; Booth MJ; Bayley H
    ACS Nano; 2021 Dec; 15(12):20214-20224. PubMed ID: 34788543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible photoelectronic signal conversion based on photoisomerization-controlled coordination change of azobenzene-bipyridine ligands to copper.
    Kume S; Murata M; Ozeki T; Nishihara H
    J Am Chem Soc; 2005 Jan; 127(2):490-1. PubMed ID: 15643850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic ion transporters that work with anion-π interactions, halogen bonds, and anion-macrodipole interactions.
    Vargas Jentzsch A; Hennig A; Mareda J; Matile S
    Acc Chem Res; 2013 Dec; 46(12):2791-800. PubMed ID: 23547885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular recognition and organizational and polyvalent effects in vesicles induce the formation of artificial multicompartment cells as model systems of eukaryotes.
    Paleos CM; Pantos A
    Acc Chem Res; 2014 May; 47(5):1475-82. PubMed ID: 24735049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled fusion of synthetic lipid membrane vesicles.
    Ma M; Bong D
    Acc Chem Res; 2013 Dec; 46(12):2988-97. PubMed ID: 23879805
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.