These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3531186)

  • 21. Effect of cysteine desulfhydrase gene disruption on L-cysteine overproduction in Escherichia coli.
    Awano N; Wada M; Kohdoh A; Oikawa T; Takagi H; Nakamori S
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):239-43. PubMed ID: 12883870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a second gene involved in global regulation of fumarate reductase and other nitrate-controlled genes for anaerobic respiration in Escherichia coli.
    Kalman LV; Gunsalus RP
    J Bacteriol; 1989 Jul; 171(7):3810-6. PubMed ID: 2544557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characterization of Escherichia coli mutants lacking inducible cyanase.
    Guilloton M; Karst F
    J Gen Microbiol; 1987 Mar; 133(3):645-53. PubMed ID: 3309165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical and genetic characterization of nirB mutants of Escherichia coli K 12 pleiotropically defective in nitrite and sulphite reduction.
    Cole JA; Newman BM; White P
    J Gen Microbiol; 1980 Oct; 120(2):475-83. PubMed ID: 6262434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of fatty acid degradation in Escherichia coli: fadR superrepressor mutants are unable to utilize fatty acids as the sole carbon source.
    Hughes KT; Simons RW; Nunn WD
    J Bacteriol; 1988 Apr; 170(4):1666-71. PubMed ID: 2895101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anaerobic growth of Escherichia coli K12 with fumarate as terminal electron acceptor. Genetic studies with menaquinone and fluoroacetate-resistant mutants.
    Guest JR
    J Gen Microbiol; 1979 Dec; 115(2):259-71. PubMed ID: 393800
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [13C]propionate oxidation in wild-type and citrate synthase mutant Escherichia coli: evidence for multiple pathways of propionate utilization.
    Evans CT; Sumegi B; Srere PA; Sherry AD; Malloy CR
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):927-32. PubMed ID: 8098211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mutant inducible for galactitol utilization in Escherichia coli K12.
    Delidakis CE; Jones-Mortimer MC; Kornberg HL
    J Gen Microbiol; 1982 Mar; 128(3):601-4. PubMed ID: 7042910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and characterization of mutants affected in the expression of the nar operon Escherichia coli.
    Orozco de Silva A; Toro S
    Acta Cient Venez; 1990; 41(1):21-5. PubMed ID: 2135555
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipoic acid metabolism in Escherichia coli: the lplA and lipB genes define redundant pathways for ligation of lipoyl groups to apoprotein.
    Morris TW; Reed KE; Cronan JE
    J Bacteriol; 1995 Jan; 177(1):1-10. PubMed ID: 8002607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of amino sugar metabolism in Escherichia coli and isolation of mutants unable to degrade amino sugars.
    White RJ
    Biochem J; 1968 Feb; 106(4):847-58. PubMed ID: 4866432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical genetics of the alpha-keto acid dehydrogenase complexes of Escherichia coli K12: isolation and biochemical properties of deletion mutants.
    Langley D; Guest JR
    J Gen Microbiol; 1977 Apr; 99(2):263-76. PubMed ID: 327021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutants of Escherichia coli with altered hydrogenase activity.
    Krasna AI
    J Gen Microbiol; 1984 Apr; 130(4):779-87. PubMed ID: 6376698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterization of Escherichia coli mutants able to utilize the novel pentose L-ribose.
    Trimbur DE; Mortlock RP
    J Bacteriol; 1991 Apr; 173(8):2459-64. PubMed ID: 1849507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alterations of glucose metabolism in Escherichia coli mutants defective in respiratory-chain enzymes.
    Kihira C; Hayashi Y; Azuma N; Noda S; Maeda S; Fukiya S; Wada M; Matsushita K; Yokota A
    J Biotechnol; 2012 Apr; 158(4):215-23. PubMed ID: 21740932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Positive control of sulphate reduction in Escherichia coli. Isolation, characterization and mapping oc cysteineless mutants of E. coli K12.
    Jones-Mortimer MC
    Biochem J; 1968 Dec; 110(3):589-95. PubMed ID: 4882981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and characterization of temperature-sensitive pantothenate kinase (coaA) mutants of Escherichia coli.
    Vallari DS; Rock CO
    J Bacteriol; 1987 Dec; 169(12):5795-800. PubMed ID: 2824448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic manipulation of membrane phospholipid composition in Escherichia coli: pgsA mutants defective in phosphatidylglycerol synthesis.
    Miyazaki C; Kuroda M; Ohta A; Shibuya I
    Proc Natl Acad Sci U S A; 1985 Nov; 82(22):7530-4. PubMed ID: 2999767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutants of Salmonella typhimurium and Escherichia coli pleiotropically defective in active transport.
    Hong JS; Kaback HR
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3336-40. PubMed ID: 4343963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ribose catabolism of Escherichia coli: characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression.
    Sørensen KI; Hove-Jensen B
    J Bacteriol; 1996 Feb; 178(4):1003-11. PubMed ID: 8576032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.