BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35311997)

  • 1. Epigenetic Activation of Plasmacytoid DCs Drives IFNAR-Dependent Therapeutic Differentiation of AML.
    Salmon JM; Todorovski I; Stanley KL; Bruedigam C; Kearney CJ; Martelotto LG; Rossello F; Semple T; Arnau GM; Zethoven M; Bots M; Bjelosevic S; Cluse LA; Fraser PJ; Litalien V; Vidacs E; McArthur K; Matthews AY; Gressier E; de Weerd NA; Lichte J; Kelly MJ; Hogg SJ; Hertzog PJ; Kats LM; Vervoort SJ; De Carvalho DD; Scheu S; Bedoui S; Kile BT; Lane SW; Perkins AC; Wei AH; Dominguez PM; Johnstone RW
    Cancer Discov; 2022 Jun; 12(6):1560-1579. PubMed ID: 35311997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors.
    Bots M; Verbrugge I; Martin BP; Salmon JM; Ghisi M; Baker A; Stanley K; Shortt J; Ossenkoppele GJ; Zuber J; Rappaport AR; Atadja P; Lowe SW; Johnstone RW
    Blood; 2014 Feb; 123(9):1341-52. PubMed ID: 24415537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Panobinostat for the treatment of acute myelogenous leukemia.
    Morabito F; Voso MT; Hohaus S; Gentile M; Vigna E; Recchia AG; Iovino L; Benedetti E; Lo-Coco F; Galimberti S
    Expert Opin Investig Drugs; 2016 Sep; 25(9):1117-31. PubMed ID: 27485472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resveratrol sensitizes acute myelogenous leukemia cells to histone deacetylase inhibitors through reactive oxygen species-mediated activation of the extrinsic apoptotic pathway.
    Yaseen A; Chen S; Hock S; Rosato R; Dent P; Dai Y; Grant S
    Mol Pharmacol; 2012 Dec; 82(6):1030-41. PubMed ID: 22923501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-leukemic effects of histone deacetylase (HDAC) inhibition in acute lymphoblastic leukemia (ALL) cells: Shedding light on mitigating effects of NF-κB and autophagy on panobinostat cytotoxicity.
    Mehrpouri M; Safaroghli-Azar A; Pourbagheri-Sigaroodi A; Momeny M; Bashash D
    Eur J Pharmacol; 2020 May; 875():173050. PubMed ID: 32142770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel epigenetic drug conjugating flavonoid and HDAC inhibitor confer suppression of acute myeloid leukemogenesis.
    Zhang J; Gao X; Wei M; Li Y; Yang G; Yang C; Yu L
    Clin Sci (Lond); 2021 Jul; 135(14):1751-1765. PubMed ID: 34282832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells.
    Fiskus W; Wang Y; Sreekumar A; Buckley KM; Shi H; Jillella A; Ustun C; Rao R; Fernandez P; Chen J; Balusu R; Koul S; Atadja P; Marquez VE; Bhalla KN
    Blood; 2009 Sep; 114(13):2733-43. PubMed ID: 19638619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic drug screen identifies the histone deacetylase inhibitor NSC3852 as a potential novel drug for the treatment of pediatric acute myeloid leukemia.
    Wiggers CRM; Govers AMAP; Lelieveld D; Egan DA; Zwaan CM; Sonneveld E; Coffer PJ; Bartels M
    Pediatr Blood Cancer; 2019 Aug; 66(8):e27785. PubMed ID: 31044544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abrogation of histone deacetylases (HDACs) decreases survival of chronic myeloid leukemia cells: New insight into attenuating effects of the PI3K/c-Myc axis on panobinostat cytotoxicity.
    Zehtabcheh S; Yousefi AM; Salari S; Safa M; Momeny M; Ghaffari SH; Bashash D
    Cell Biol Int; 2021 May; 45(5):1111-1121. PubMed ID: 33501756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Inhibitors of Histone Deacetylases 1 and 2 Synergize with Azacitidine in Acute Myeloid Leukemia.
    Min C; Moore N; Shearstone JR; Quayle SN; Huang P; van Duzer JH; Jarpe MB; Jones SS; Yang M
    PLoS One; 2017; 12(1):e0169128. PubMed ID: 28060870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone Deacetylase Inhibition with Panobinostat Combined with Intensive Induction Chemotherapy in Older Patients with Acute Myeloid Leukemia: Phase I Study Results.
    Wieduwilt MJ; Pawlowska N; Thomas S; Olin R; Logan AC; Damon LE; Martin T; Kang M; Sayre PH; Boyer W; Gaensler KML; Anderson K; Munster PN; Andreadis C
    Clin Cancer Res; 2019 Aug; 25(16):4917-4923. PubMed ID: 31152020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myelogenous leukemia cells.
    Fiskus W; Sharma S; Qi J; Valenta JA; Schaub LJ; Shah B; Peth K; Portier BP; Rodriguez M; Devaraj SG; Zhan M; Sheng J; Iyer SP; Bradner JE; Bhalla KN
    Mol Cancer Ther; 2014 May; 13(5):1142-54. PubMed ID: 24435446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CDK9 Inhibitor Dinaciclib Exerts Potent Apoptotic and Antitumor Effects in Preclinical Models of MLL-Rearranged Acute Myeloid Leukemia.
    Baker A; Gregory GP; Verbrugge I; Kats L; Hilton JJ; Vidacs E; Lee EM; Lock RB; Zuber J; Shortt J; Johnstone RW
    Cancer Res; 2016 Mar; 76(5):1158-69. PubMed ID: 26627013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing TNF receptor 2+ regulatory T cells via the combined action of azacitidine and the HDAC inhibitor, panobinostat for clinical benefit in acute myeloid leukemia patients.
    Govindaraj C; Tan P; Walker P; Wei A; Spencer A; Plebanski M
    Clin Cancer Res; 2014 Feb; 20(3):724-35. PubMed ID: 24297862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased anti-leukemic activity of decitabine via AR-42-induced upregulation of miR-29b: a novel epigenetic-targeting approach in acute myeloid leukemia.
    Mims A; Walker AR; Huang X; Sun J; Wang H; Santhanam R; Dorrance AM; Walker C; Hoellerbauer P; Tarighat SS; Chan KK; Klisovic RB; Perrotti D; Caligiuri MA; Byrd JC; Chen CS; James Lee L; Jacob S; Mrózek K; Bloomfield CD; Blum W; Garzon R; Schwind S; Marcucci G
    Leukemia; 2013 Apr; 27(4):871-8. PubMed ID: 23178755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Butyrates and decitabine cooperate to induce histone acetylation and granulocytic maturation of t(8;21) acute myeloid leukemia blasts.
    Gozzini A; Santini V
    Ann Hematol; 2005 Dec; 84 Suppl 1():54-60. PubMed ID: 16228241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone deacetylases 1 and 2 cooperate in regulating BRCA1, CHK1, and RAD51 expression in acute myeloid leukemia cells.
    Zhao J; Xie C; Edwards H; Wang G; Taub JW; Ge Y
    Oncotarget; 2017 Jan; 8(4):6319-6329. PubMed ID: 28030834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone deacetylase inhibitors for the treatment of myelodysplastic syndrome and acute myeloid leukemia.
    Quintás-Cardama A; Santos FP; Garcia-Manero G
    Leukemia; 2011 Feb; 25(2):226-35. PubMed ID: 21116282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ARHGEF3 controls HDACi-induced differentiation via RhoA-dependent pathways in acute myeloid leukemias.
    D'Amato L; Dell'Aversana C; Conte M; Ciotta A; Scisciola L; Carissimo A; Nebbioso A; Altucci L
    Epigenetics; 2015; 10(1):6-18. PubMed ID: 25494542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic therapies in acute myeloid leukemia: the role of hypomethylating agents, histone deacetylase inhibitors and the combination of hypomethylating agents with histone deacetylase inhibitors.
    Xu QY; Yu L
    Chin Med J (Engl); 2020 Mar; 133(6):699-715. PubMed ID: 32044818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.