BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3531208)

  • 1. Fluorescence studies of chicken liver fatty acid synthase. Segmental flexibility and distance measurements.
    Yuan ZY; Hammes GG
    J Biol Chem; 1986 Oct; 261(29):13643-51. PubMed ID: 3531208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and nuclear magnetic resonance study of the interaction of NADP+ and NADPH with chicken liver fatty acid synthase.
    Leanz GF; Hammes GG
    Biochemistry; 1986 Sep; 25(19):5617-24. PubMed ID: 3535882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elementary steps in the reaction mechanism of chicken liver fatty acid synthase: reduced nicotinamide adenine dinucleotide phosphate binding and formation and reduction of acetoacetyl-enzyme.
    Cognet JA; Cox BG; Hammes GG
    Biochemistry; 1983 Dec; 22(26):6281-7. PubMed ID: 6362722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the functional topology of the animal fatty acid synthase by mutant complementation in vitro.
    Rangan VS; Joshi AK; Smith S
    Biochemistry; 2001 Sep; 40(36):10792-9. PubMed ID: 11535054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of enzymatic activities and aggregation state in chicken liver fatty acid synthase.
    Kashem MA; Hammes GG
    Biochim Biophys Acta; 1988 Aug; 956(1):39-48. PubMed ID: 3408738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of mammalian fatty acid synthetase activity by NADP involves decreased mobility of the 4'-phosphopantetheine prosthetic group.
    Stern A; Smith S
    J Biol Chem; 1987 Apr; 262(11):5087-92. PubMed ID: 3558385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The architecture of the animal fatty acid synthetase. III. Isolation and characterization of beta-ketoacyl reductase.
    Wong H; Mattick JS; Wakil SJ
    J Biol Chem; 1983 Dec; 258(24):15305-11. PubMed ID: 6361031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid sequences of pyridoxal 5'-phosphate binding sites and fluorescence resonance energy transfer in chicken liver fatty acid synthase.
    Chang SI; Hammes GG
    Biochemistry; 1989 May; 28(9):3781-8. PubMed ID: 2751995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and structural investigation of acyl-binding sites on avian fatty acid synthase.
    Cardon JW; Hammes GG
    J Biol Chem; 1983 Apr; 258(8):4802-7. PubMed ID: 6833278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The presence of essential arginine residues at the NADPH-binding sites of beta-ketoacyl reductase and enoyl reductase domains of the multifunctional fatty acid synthetase of chicken liver.
    Vernon CM; Hsu RY
    Biochim Biophys Acta; 1984 Jul; 788(1):124-31. PubMed ID: 6378254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presence of one essential arginine that specifically binds the 2'-phosphate of NADPH on each of the ketoacyl reductase and enoyl reductase active sites of fatty acid synthetase.
    Poulose AJ; Kolattukudy PE
    Arch Biochem Biophys; 1980 Feb; 199(2):457-64. PubMed ID: 6987953
    [No Abstract]   [Full Text] [Related]  

  • 12. Elementary steps in the reaction mechanism of chicken liver fatty acid synthase: beta-ketoacyl reductase and enoyl reductase.
    Cognet JA; Hammes GG
    Biochemistry; 1985 Jan; 24(2):290-7. PubMed ID: 3978075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The presence of a histidine residue at or near the NADPH binding site of enoyl reductase domain on the multifunctional fatty acid synthetase of chicken liver.
    Vernon CN; Hsu RY
    Biochim Biophys Acta; 1986 Jan; 869(1):23-8. PubMed ID: 3942750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elementary steps in the reaction mechanism of chicken liver fatty acid synthase. pH dependence of NADPH binding and isotope rate effect for beta-ketoacyl reductase.
    Yuan Z; Hammes GG
    J Biol Chem; 1984 Jun; 259(11):6748-51. PubMed ID: 6373765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of reduced nicotinamide adenine dinucleotide phosphate and acyl-binding sites on avian fatty acid synthase.
    Cardon JW; Hammes GG
    Biochemistry; 1982 Jun; 21(12):2863-70. PubMed ID: 7104298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of recombinant thioesterase and acyl carrier protein domains of chicken fatty acid synthase expressed in Escherichia coli.
    Pazirandeh M; Chirala SS; Huang WY; Wakil SJ
    J Biol Chem; 1989 Oct; 264(30):18195-201. PubMed ID: 2681189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dehydrogenase activities of fatty acid synthesizing enzyme systems.
    Katiyar SS; Porter JW
    Experientia Suppl; 1980; 36():181-231. PubMed ID: 6987077
    [No Abstract]   [Full Text] [Related]  

  • 18. The enoyl-[acyl-carrier-protein] reductase (FabI) of Escherichia coli, which catalyzes a key regulatory step in fatty acid biosynthesis, accepts NADH and NADPH as cofactors and is inhibited by palmitoyl-CoA.
    Bergler H; Fuchsbichler S; Högenauer G; Turnowsky F
    Eur J Biochem; 1996 Dec; 242(3):689-94. PubMed ID: 9022698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective chemical modification of the active sites of the ketoacyl reductase and enoyl reductase of fatty acid synthetase from lactating rat mammary glands.
    Poulose AJ; Rogers L; Kolattukudy PE
    Int J Biochem; 1980; 12(4):591-6. PubMed ID: 6775990
    [No Abstract]   [Full Text] [Related]  

  • 20. Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli.
    Heath RJ; Rock CO
    J Biol Chem; 1995 Nov; 270(44):26538-42. PubMed ID: 7592873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.