These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 3531210)
21. Solution structure of the tissue-type plasminogen activator kringle 2 domain complexed to 6-aminohexanoic acid an antifibrinolytic drug. Byeon IJ; Llinás M J Mol Biol; 1991 Dec; 222(4):1035-51. PubMed ID: 1762144 [TBL] [Abstract][Full Text] [Related]
22. Analysis of the aromatic 1H NMR spectrum of chicken plasminogen kringle 4. Petros AM; Gyenes M; Patthy L; Llinás M Arch Biochem Biophys; 1988 Jul; 264(1):192-202. PubMed ID: 2840024 [TBL] [Abstract][Full Text] [Related]
23. Recombinant gene expression and 1H NMR characteristics of the kringle (2 + 3) supermodule: spectroscopic/functional individuality of plasminogen kringle domains. Söhndel S; Hu CK; Marti D; Affolter M; Schaller J; Llinás M; Rickli EE Biochemistry; 1996 Feb; 35(7):2357-64. PubMed ID: 8652577 [TBL] [Abstract][Full Text] [Related]
24. Analysis of the aliphatic 1H-NMR spectrum of plasminogen kringle 4. A comparative study of human, porcine, bovine and chicken homologs. Petros AM; Gyenes M; Patthy L; Llinás M Eur J Biochem; 1988 Jan; 170(3):549-63. PubMed ID: 3338451 [TBL] [Abstract][Full Text] [Related]
25. Kringle 4 from human plasminogen: a proton magnetic resonance study via two-dimensional photochemically induced dynamic nuclear polarization spectroscopy. De Marco A; Zetta L; Petros AM; Llinás M; Boelens R; Kaptein R Biochemistry; 1986 Dec; 25(24):7918-23. PubMed ID: 3801450 [TBL] [Abstract][Full Text] [Related]
26. Analysis of ligand-binding to the kringle 4 fragment from human plasminogen. De Marco A; Petros AM; Laursen RA; Llinás M Eur Biophys J; 1987; 14(6):359-68. PubMed ID: 3036485 [TBL] [Abstract][Full Text] [Related]
27. Solution structure and dynamics of the plasminogen kringle 2-AMCHA complex: 3(1)-helix in homologous domains. Marti DN; Schaller J; Llinás M Biochemistry; 1999 Nov; 38(48):15741-55. PubMed ID: 10625440 [TBL] [Abstract][Full Text] [Related]
28. 600 MHz H nuclear magnetic resonance studies of the kringle 4 fragment of human plasminogen. Hochschwender SM; Laursen RA; De Marco A; Llinas M Arch Biochem Biophys; 1983 May; 223(1):58-67. PubMed ID: 6305276 [TBL] [Abstract][Full Text] [Related]
29. Isolation, purification and 1H-NMR characterization of a kringle 5 domain fragment from human plasminogen. Thewes T; Ramesh V; Simplaceanu EL; Llinás M Biochim Biophys Acta; 1987 Apr; 912(2):254-69. PubMed ID: 3030435 [TBL] [Abstract][Full Text] [Related]
30. Ligand specificity of human plasminogen kringle 4. Rejante MR; Byeon IJ; Llinás M Biochemistry; 1991 Nov; 30(46):11081-92. PubMed ID: 1657159 [TBL] [Abstract][Full Text] [Related]
31. Nuclear magnetic resonance (NMR) solution structure, dynamics, and binding properties of the kringle IV type 8 module of apolipoprotein(a). Chitayat S; Kanelis V; Koschinsky ML; Smith SP Biochemistry; 2007 Feb; 46(7):1732-42. PubMed ID: 17263558 [TBL] [Abstract][Full Text] [Related]
32. Role of tryptophan-63 of the kringle 2 domain of tissue-type plasminogen activator in its thermal stability, folding, and ligand binding properties. Chang Y; Zajicek J; Castellino FJ Biochemistry; 1997 Jun; 36(25):7652-63. PubMed ID: 9201906 [TBL] [Abstract][Full Text] [Related]
33. Lysine/fibrin binding sites of kringles modeled after the structure of kringle 1 of prothrombin. Tulinsky A; Park CH; Mao B; Llinás M Proteins; 1988; 3(2):85-96. PubMed ID: 3135547 [TBL] [Abstract][Full Text] [Related]
34. Role of tryptophan-74 of the recombinant kringle 2 domain of tissue-type plasminogen activator in its omega-amino acid binding properties. De Serrano VS; Castellino FJ Biochemistry; 1992 Apr; 31(13):3326-35. PubMed ID: 1554717 [TBL] [Abstract][Full Text] [Related]
35. Sequential assignment of proton resonances in the NMR spectrum of Zn-substituted alpha chains from human hemoglobin. Ligand-induced tertiary changes in the heme pocket. Martineau L; Craescu CT Eur J Biochem; 1993 Jun; 214(2):383-93. PubMed ID: 8513788 [TBL] [Abstract][Full Text] [Related]
36. Solution structure and functional characterization of human plasminogen kringle 5. Battistel MD; Grishaev A; An SS; Castellino FJ; Llinás M Biochemistry; 2009 Nov; 48(43):10208-19. PubMed ID: 19821587 [TBL] [Abstract][Full Text] [Related]
37. Macro- and micro-stabilities of the kringle 4 domain from plasminogen. The effect of ligand binding. De Marco A; Motta A; Llinás M; Laursen RA Biophys J; 1985 Sep; 48(3):411-22. PubMed ID: 4041537 [TBL] [Abstract][Full Text] [Related]
38. Chemical modification and nuclear magnetic resonance studies on human plasminogen kringle 4. Assignment of tyrosine and histidine resonances to specific residues in the sequence. Trexler M; Bányai L; Patthy L; Pluck ND; Williams RJ Eur J Biochem; 1985 Oct; 152(2):439-46. PubMed ID: 2996892 [TBL] [Abstract][Full Text] [Related]
39. The lysine binding sites of human plasminogen. Evidence for a critical tryptophan in the binding site of kringle 4. Hochschwender SM; Laursen RA J Biol Chem; 1981 Nov; 256(21):11172-6. PubMed ID: 6793592 [TBL] [Abstract][Full Text] [Related]
40. An internal histidine residue from the bacterial surface protein, PAM, mediates its binding to the kringle-2 domain of human plasminogen. Schenone MM; Warder SE; Martin JA; Prorok M; Castellino FJ J Pept Res; 2000 Dec; 56(6):438-45. PubMed ID: 11152303 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]