These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 35312210)
1. Mind the gap: Performance metric evaluation in brain-age prediction. de Lange AG; Anatürk M; Rokicki J; Han LKM; Franke K; Alnaes D; Ebmeier KP; Draganski B; Kaufmann T; Westlye LT; Hahn T; Cole JH Hum Brain Mapp; 2022 Jul; 43(10):3113-3129. PubMed ID: 35312210 [TBL] [Abstract][Full Text] [Related]
2. General Approach to Estimate Error Bars for Quantitative Structure-Activity Relationship Predictions of Molecular Activity. Liu R; Glover KP; Feasel MG; Wallqvist A J Chem Inf Model; 2018 Aug; 58(8):1561-1575. PubMed ID: 29949366 [TBL] [Abstract][Full Text] [Related]
3. Statistical machine learning models for prediction of China's maritime emergency patients in dynamic: ARIMA model, SARIMA model, and dynamic Bayesian network model. Yang P; Cheng P; Zhang N; Luo D; Xu B; Zhang H Front Public Health; 2024; 12():1401161. PubMed ID: 39022407 [TBL] [Abstract][Full Text] [Related]
4. Brain Age Prediction: A Comparison between Machine Learning Models Using Brain Morphometric Data. Han J; Kim SY; Lee J; Lee WH Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298428 [TBL] [Abstract][Full Text] [Related]
5. Systematic evaluation of machine learning algorithms for neuroanatomically-based age prediction in youth. Modabbernia A; Whalley HC; Glahn DC; Thompson PM; Kahn RS; Frangou S Hum Brain Mapp; 2022 Dec; 43(17):5126-5140. PubMed ID: 35852028 [TBL] [Abstract][Full Text] [Related]
6. Consultation length and no-show prediction for improving appointment scheduling efficiency at a cardiology clinic: A data analytics approach. Srinivas S; Salah H Int J Med Inform; 2021 Jan; 145():104290. PubMed ID: 33099184 [TBL] [Abstract][Full Text] [Related]
7. Hybridizing five neural-metaheuristic paradigms to predict the pillar stress in bord and pillar method. Zhou J; Chen Y; Chen H; Khandelwal M; Monjezi M; Peng K Front Public Health; 2023; 11():1119580. PubMed ID: 36761136 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a machine learning algorithms for predicting the dental age of adolescent based on different preprocessing methods. Shen S; Yuan X; Wang J; Fan L; Zhao J; Tao J Front Public Health; 2022; 10():1068253. PubMed ID: 36530730 [TBL] [Abstract][Full Text] [Related]
10. Prediction of patient-specific quality assurance for volumetric modulated arc therapy using radiomics-based machine learning with dose distribution. Ishizaka N; Kinoshita T; Sakai M; Tanabe S; Nakano H; Tanabe S; Nakamura S; Mayumi K; Akamatsu S; Nishikata T; Takizawa T; Yamada T; Sakai H; Kaidu M; Sasamoto R; Ishikawa H; Utsunomiya S J Appl Clin Med Phys; 2024 Jan; 25(1):e14215. PubMed ID: 37987544 [TBL] [Abstract][Full Text] [Related]
11. Prediction of Chloride Diffusion Coefficient in Concrete Modified with Supplementary Cementitious Materials Using Machine Learning Algorithms. Al Fuhaid AF; Alanazi H Materials (Basel); 2023 Feb; 16(3):. PubMed ID: 36770282 [TBL] [Abstract][Full Text] [Related]
12. Supervised learning techniques for dairy cattle body weight prediction from 3D digital images. Gebreyesus G; Milkevych V; Lassen J; Sahana G Front Genet; 2022; 13():947176. PubMed ID: 36685975 [No Abstract] [Full Text] [Related]
13. Prediction of jumbo drill penetration rate in underground mines using various machine learning approaches and traditional models. Heydari S; Hoseinie SH; Bagherpour R Sci Rep; 2024 Apr; 14(1):8928. PubMed ID: 38637673 [TBL] [Abstract][Full Text] [Related]
14. Prediction of hepatitis E using machine learning models. Guo Y; Feng Y; Qu F; Zhang L; Yan B; Lv J PLoS One; 2020; 15(9):e0237750. PubMed ID: 32941452 [TBL] [Abstract][Full Text] [Related]
15. Predicting Brain Age Using Machine Learning Algorithms: A Comprehensive Evaluation. Beheshti I; Ganaie MA; Paliwal V; Rastogi A; Razzak I; Tanveer M IEEE J Biomed Health Inform; 2022 Apr; 26(4):1432-1440. PubMed ID: 34029201 [TBL] [Abstract][Full Text] [Related]
16. Gaming behavior and brain activation using functional near-infrared spectroscopy, Iowa gambling task, and machine learning techniques. Kornev D; Nwoji S; Sadeghian R; Esmaili Sardari S; Dashtestani H; He Q; Gandjbakhche A; Aram S Brain Behav; 2022 Apr; 12(4):e2536. PubMed ID: 35290722 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Machine Learning Models for Brain Age Prediction Using Six Imaging Modalities on Middle-Aged and Older Adults. Xiong M; Lin L; Jin Y; Kang W; Wu S; Sun S Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050682 [TBL] [Abstract][Full Text] [Related]
18. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511 [TBL] [Abstract][Full Text] [Related]
19. Machine learning assisted Cameriere method for dental age estimation. Shen S; Liu Z; Wang J; Fan L; Ji F; Tao J BMC Oral Health; 2021 Dec; 21(1):641. PubMed ID: 34911516 [TBL] [Abstract][Full Text] [Related]
20. Machine learning guided postnatal gestational age assessment using new-born screening metabolomic data in South Asia and sub-Saharan Africa. Sazawal S; Ryckman KK; Das S; Khanam R; Nisar I; Jasper E; Dutta A; Rahman S; Mehmood U; Bedell B; Deb S; Chowdhury NH; Barkat A; Mittal H; Ahmed S; Khalid F; Raqib R; Manu A; Yoshida S; Ilyas M; Nizar A; Ali SM; Baqui AH; Jehan F; Dhingra U; Bahl R BMC Pregnancy Childbirth; 2021 Sep; 21(1):609. PubMed ID: 34493237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]