These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 35312219)

  • 21. In Situ Observation of Interface Evolution on a Graphite Anode by Scanning Electrochemical Microscopy.
    Zeng X; Liu D; Wang S; Liu S; Cai X; Zhang L; Zhao R; Li B; Kang F
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37047-37053. PubMed ID: 32814414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Operando Investigation of Solid Electrolyte Interphase Formation, Dynamic Evolution, and Degradation During Lithium Plating/Stripping.
    Krumov MR; Lang S; Johnson L; Abruña HD
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47692-47703. PubMed ID: 37751476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solid Electrolyte Interphase Architecture for a Stable Li-electrolyte Interface.
    Pan Y; Zhang Y
    Chem Asian J; 2023 Oct; 18(19):e202300453. PubMed ID: 37563980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes.
    Li J; Dudney NJ; Nanda J; Liang C
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10083-8. PubMed ID: 24926882
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of the Dynamic Solid Electrolyte Interphase in Mg Electrolytes for Rechargeable Mg-Ion Batteries.
    Fan S; Cora S; Sa N
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46635-46645. PubMed ID: 36205546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorine-Terminated Self-Assembled Monolayers Grafted Graphite Anode Inducing a LiF-Dominated SEI Inorganic Layer for Fast-Charging Lithium-Ion Batteries.
    Zhong M; Bai M; Shen W; Zhang J; Guo S
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):5813-5822. PubMed ID: 38272467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties.
    Liu XR; Deng X; Liu RR; Yan HJ; Guo YG; Wang D; Wan LJ
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20317-23. PubMed ID: 25380518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The redox mediated - scanning droplet cell system for evaluation of the solid electrolyte interphase in Li-ion batteries.
    Muñoz-Torrero D; Santana Santos C; García-Quismondo E; Dieckhöfer S; Erichsen T; Palma J; Schuhmann W; Ventosa E
    RSC Adv; 2023 May; 13(23):15521-15530. PubMed ID: 37223417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulating Electron Conducting Properties at Lithium Anode Interfaces for Durable Lithium-Sulfur Batteries.
    Jin Q; Zhao K; Wang J; Xiao J; Wu L; Zhang X; Kong L; Li L; Lu H; Xie Y; Li W; Zhang X
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53850-53859. PubMed ID: 36399033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Butadiene Sulfone as an Electrolyte Additive on the Formation of Solid Electrolyte Interphase in Lithium-Ion Batteries Based on Li
    Kung YR; Li CY; Hasin P; Su CH; Lin JY
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bi-containing Electrolyte Enables Robust and Li Ion Conductive Solid Electrolyte Interphase for Advanced Lithium Metal Anodes.
    Cui Y; Liu S; Liu B; Wang D; Zhong Y; Zhang X; Wang X; Xia X; Gu C; Tu J
    Front Chem; 2019; 7():952. PubMed ID: 32039160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Operando Electrochemical Atomic Force Microscopy of Solid-Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties.
    Zhang Z; Smith K; Jervis R; Shearing PR; Miller TS; Brett DJL
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35132-35141. PubMed ID: 32657567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries.
    Zheng J; Zheng H; Wang R; Ben L; Lu W; Chen L; Chen L; Li H
    Phys Chem Chem Phys; 2014 Jul; 16(26):13229-38. PubMed ID: 24869920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Layer Number Dependence of Li(+) Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution.
    Hui J; Burgess M; Zhang J; Rodríguez-López J
    ACS Nano; 2016 Apr; 10(4):4248-57. PubMed ID: 26943950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy.
    Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL
    Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes.
    Lu D; Tao J; Yan P; Henderson WA; Li Q; Shao Y; Helm ML; Borodin O; Graff GL; Polzin B; Wang CM; Engelhard M; Zhang JG; De Yoreo JJ; Liu J; Xiao J
    Nano Lett; 2017 Mar; 17(3):1602-1609. PubMed ID: 28165750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coordinated mapping of Li
    Gossage ZT; Hui J; Sarbapalli D; Rodríguez-López J
    Analyst; 2020 Apr; 145(7):2631-2638. PubMed ID: 32101184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Comparison of Solid Electrolyte Interphase Formation and Evolution on Highly Oriented Pyrolytic and Disordered Graphite Negative Electrodes in Lithium-Ion Batteries.
    Zhu H; Russell JA; Fang Z; Barnes P; Li L; Efaw C; Muenzer A; May J; Hamal K; Cheng IF; Davis PH; Dufek E; Xiong H
    Small; 2021 Dec; 17(52):e2105292. PubMed ID: 34716757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Switching Electrolyte Interfacial Model to Engineer Solid Electrolyte Interface for Fast Charging and Wide-Temperature Lithium-Ion Batteries.
    Liu G; Cao Z; Wang P; Ma Z; Zou Y; Sun Q; Cheng H; Cavallo L; Li S; Li Q; Ming J
    Adv Sci (Weinh); 2022 Sep; 9(26):e2201893. PubMed ID: 35843866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ Observation of Evolving H
    Gossage ZT; Ito N; Hosaka T; Tatara R; Komaba S
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202307446. PubMed ID: 37593892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.