These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35312229)

  • 41. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries.
    bai Z; Ju Z; Guo C; Qian Y; Tang B; Xiong S
    Nanoscale; 2014 Mar; 6(6):3268-73. PubMed ID: 24509514
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.
    Lee S; Kwon G; Ku K; Yoon K; Jung SK; Lim HD; Kang K
    Adv Mater; 2018 Oct; 30(42):e1704682. PubMed ID: 29582467
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An unsymmetrical lithium-ion pathway between charge and discharge processes in a two-phase stage of Li4Ti5O12.
    Li D; He P; Li H; Zhou H
    Phys Chem Chem Phys; 2012 Jul; 14(25):9086-91. PubMed ID: 22635051
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.
    Luo JY; Cui WJ; He P; Xia YY
    Nat Chem; 2010 Sep; 2(9):760-5. PubMed ID: 20729897
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surpassing the Redox Potential Limit of Organic Cathode Materials via Extended p-π Conjugation of Dioxin.
    Zheng Y; Ji H; Liu J; Wang Z; Zhou J; Qian T; Yan C
    Nano Lett; 2022 Apr; 22(8):3473-3479. PubMed ID: 35426684
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium-Oxygen Batteries.
    Liu B; Xu W; Yan P; Bhattacharya P; Cao R; Bowden ME; Engelhard MH; Wang CM; Zhang JG
    ChemSusChem; 2015 Nov; 8(21):3697-703. PubMed ID: 26457378
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of Titania@Carbon Nanocomposite from Urea-Impregnated Cellulose for Efficient Lithium and Sodium Batteries.
    Henry A; Louvain N; Fontaine O; Stievano L; Monconduit L; Boury B
    ChemSusChem; 2016 Feb; 9(3):264-73. PubMed ID: 26812587
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Designing High Performance Organic Batteries.
    Chen Y; Wang C
    Acc Chem Res; 2020 Nov; 53(11):2636-2647. PubMed ID: 32976710
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity.
    Nokami T; Matsuo T; Inatomi Y; Hojo N; Tsukagoshi T; Yoshizawa H; Shimizu A; Kuramoto H; Komae K; Tsuyama H; Yoshida J
    J Am Chem Soc; 2012 Dec; 134(48):19694-700. PubMed ID: 23130634
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Visualizing the chemistry and structure dynamics in lithium-ion batteries by in-situ neutron diffraction.
    Wang XL; An K; Cai L; Feng Z; Nagler SE; Daniel C; Rhodes KJ; Stoica AD; Skorpenske HD; Liang C; Zhang W; Kim J; Qi Y; Harris SJ
    Sci Rep; 2012; 2():747. PubMed ID: 23087812
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly reversible open framework nanoscale electrodes for divalent ion batteries.
    Wang RY; Wessells CD; Huggins RA; Cui Y
    Nano Lett; 2013; 13(11):5748-52. PubMed ID: 24147617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Non-destructive monitoring of charge-discharge cycles on lithium ion batteries using ⁷Li stray-field imaging.
    Tang JA; Dugar S; Zhong G; Dalal NS; Zheng JP; Yang Y; Fu R
    Sci Rep; 2013; 3():2596. PubMed ID: 24005580
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rechargeable Na/Cl
    Zhu G; Tian X; Tai HC; Li YY; Li J; Sun H; Liang P; Angell M; Huang CL; Ku CS; Hung WH; Jiang SK; Meng Y; Chen H; Lin MC; Hwang BJ; Dai H
    Nature; 2021 Aug; 596(7873):525-530. PubMed ID: 34433941
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metallic two-dimensional BP
    Ye XJ; Xu J; Guo YD; Liu CS
    Phys Chem Chem Phys; 2021 Feb; 23(7):4386-4393. PubMed ID: 33594394
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sulfidated TiO2 nanotubes: a potential 3D cathode material for Li-ion micro batteries.
    Kyeremateng NA; Plylahan N; dos Santos AC; Taveira LV; Dick LF; Djenizian T
    Chem Commun (Camb); 2013 May; 49(39):4205-7. PubMed ID: 23165523
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Size effect of lithium peroxide on charging performance of Li-O2 batteries.
    Hu Y; Han X; Cheng F; Zhao Q; Hu Z; Chen J
    Nanoscale; 2014 Jan; 6(1):177-80. PubMed ID: 24219997
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study.
    Lv X; Li F; Gong J; Gu J; Lin S; Chen Z
    Phys Chem Chem Phys; 2020 Apr; 22(16):8902-8912. PubMed ID: 32289818
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ε-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li-O2 batteries.
    Hu X; Han X; Hu Y; Cheng F; Chen J
    Nanoscale; 2014 Apr; 6(7):3522-5. PubMed ID: 24577589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.