These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 35312337)
41. Evaluation of the prognostic value of different methods of calculating the tumour metabolic volume with Guzmán Ortiz S; Mucientes Rasilla J; Vargas Núñez JA; Royuela A; Navarro Matilla B; Mitjavila Casanovas M Rev Esp Med Nucl Imagen Mol (Engl Ed); 2020; 39(6):340-346. PubMed ID: 32646783 [TBL] [Abstract][Full Text] [Related]
42. 18F-FDG PET/CT of thymic epithelial tumors: usefulness for distinguishing and staging tumor subgroups. Sung YM; Lee KS; Kim BT; Choi JY; Shim YM; Yi CA J Nucl Med; 2006 Oct; 47(10):1628-34. PubMed ID: 17015898 [TBL] [Abstract][Full Text] [Related]
43. Machine learning based evaluation of clinical and pretreatment Nakajo M; Jinguji M; Tani A; Yano E; Hoo CK; Hirahara D; Togami S; Kobayashi H; Yoshiura T Abdom Radiol (NY); 2022 Feb; 47(2):838-847. PubMed ID: 34821963 [TBL] [Abstract][Full Text] [Related]
44. Prognostic value of metabolic tumor burden from (18)F-FDG PET in surgical patients with non-small-cell lung cancer. Zhang H; Wroblewski K; Liao S; Kampalath R; Penney BC; Zhang Y; Pu Y Acad Radiol; 2013 Jan; 20(1):32-40. PubMed ID: 22999369 [TBL] [Abstract][Full Text] [Related]
45. Pretreatment serum neutrophil-to-lymphocyte and monocyte-to-lymphocyte ratios: Two tumor-related systemic inflammatory markers in patients with thymic epithelial tumors. Wang L; Ruan M; Yan H; Lei B; Sun X; Chang C; Liu L; Xie W Cytokine; 2020 Sep; 133():155149. PubMed ID: 32512341 [TBL] [Abstract][Full Text] [Related]
46. Can Nakagawa K; Takahashi S; Endo M; Ohde Y; Kurihara H; Terauchi T Cancer Manag Res; 2017; 9():761-768. PubMed ID: 29263700 [TBL] [Abstract][Full Text] [Related]
47. Application of a Machine Learning Approach for the Analysis of Clinical and Radiomic Features of Pretreatment [ Nakajo M; Jinguji M; Tani A; Kikuno H; Hirahara D; Togami S; Kobayashi H; Yoshiura T Mol Imaging Biol; 2021 Oct; 23(5):756-765. PubMed ID: 33763816 [TBL] [Abstract][Full Text] [Related]
48. Impact of Akamine T; Nakagawa K; Ito K; Watanabe H; Yotsukura M; Yoshida Y; Yatabe Y; Kusumoto M; Watanabe SI Ann Surg Oncol; 2024 Jan; 31(1):192-200. PubMed ID: 37743455 [TBL] [Abstract][Full Text] [Related]
49. Usefulness of 18-F FDG PET/CT in the pre-treatment evaluation of thymic epithelial neoplasms. Terzi A; Bertolaccini L; Rizzardi G; Luzzi L; Bianchi A; Campione A; Comino A; Biggi A Lung Cancer; 2011 Nov; 74(2):239-43. PubMed ID: 21439670 [TBL] [Abstract][Full Text] [Related]
50. The role of [¹⁸F]fluorodeoxyglucose positron emission tomography in thymic epithelial tumors. Kaira K; Sunaga N; Ishizuka T; Shimizu K; Yamamoto N Cancer Imaging; 2011 Nov; 11(1):195-201. PubMed ID: 22138614 [TBL] [Abstract][Full Text] [Related]
51. Utility of 18F-fluorodeoxyglucose positron emission tomography for distinguishing between the histological types of early stage thymic epithelial tumours. Eguchi T; Yoshida K; Hamanaka K; Shiina T; Koizumi T; Kawakami S; Oguchi K; Amano J Eur J Cardiothorac Surg; 2012 May; 41(5):1059-62. PubMed ID: 22219437 [TBL] [Abstract][Full Text] [Related]
52. 18F-FDG-PET/CT predicts grade of malignancy and invasive potential of thymic epithelial tumors. Ito T; Suzuki H; Sakairi Y; Wada H; Nakajima T; Yoshino I Gen Thorac Cardiovasc Surg; 2021 Feb; 69(2):274-281. PubMed ID: 32734427 [TBL] [Abstract][Full Text] [Related]
53. 18F-fluorodeoxyglucose positron emission tomography in the management of patients with thymic epithelial tumors. Thomas A; Mena E; Kurdziel K; Venzon D; Khozin S; Berman AW; Choyke P; Szabo E; Rajan A; Giaccone G Clin Cancer Res; 2013 Mar; 19(6):1487-93. PubMed ID: 23382114 [TBL] [Abstract][Full Text] [Related]
54. A diagnostic model based on Zhou S; Tsui P; Lin M; Chen G; Chen W; Cai X BMC Med Imaging; 2024 Jan; 24(1):14. PubMed ID: 38191331 [TBL] [Abstract][Full Text] [Related]
55. The correlation of Qu YH; Long N; Ran C; Sun J Clin Transl Oncol; 2021 Mar; 23(3):620-627. PubMed ID: 32683540 [TBL] [Abstract][Full Text] [Related]
56. [Prognostic value of pretreatment (18)F-FDG PET-CT metabolic parameters in patients with advanced extranodal NK/T cell lymphoma]. Wu LL; Liang JH; Wang L; Xu W; Ding CY Zhonghua Zhong Liu Za Zhi; 2019 Nov; 41(11):831-836. PubMed ID: 31770850 [No Abstract] [Full Text] [Related]
57. Volume-based parameters on FDG PET may predict the proliferative potential of soft-tissue sarcomas. Kitao T; Shiga T; Hirata K; Sekizawa M; Takei T; Yamashiro K; Tamaki N Ann Nucl Med; 2019 Jan; 33(1):22-31. PubMed ID: 30196378 [TBL] [Abstract][Full Text] [Related]
58. Prognostic value of metabolic tumor volume and total lesion glycolysis from ¹⁸F-FDG PET/CT in lymph node metastases and risk stratification of endometrial carcinoma. Liu DD; Li J; Li X; Xie L; Qin L; Peng F; Cheng MH J Gynecol Oncol; 2019 Nov; 30(6):e89. PubMed ID: 31576685 [TBL] [Abstract][Full Text] [Related]
59. The Usefulness of Machine Learning-Based Evaluation of Clinical and Pretreatment [ Nakajo M; Kawaji K; Nagano H; Jinguji M; Mukai A; Kawabata H; Tani A; Hirahara D; Yamashita M; Yoshiura T Mol Imaging Biol; 2023 Apr; 25(2):303-313. PubMed ID: 35864282 [TBL] [Abstract][Full Text] [Related]
60. Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [ de Jesus FM; Yin Y; Mantzorou-Kyriaki E; Kahle XU; de Haas RJ; Yakar D; Glaudemans AWJM; Noordzij W; Kwee TC; Nijland M Eur J Nucl Med Mol Imaging; 2022 Apr; 49(5):1535-1543. PubMed ID: 34850248 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]