These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 35312376)
21. Computed Tomography-based Radiomics Nomogram for the Preoperative Prediction of Tumor Deposits and Clinical Outcomes in Colon Cancer: a Multicenter Study. Li M; Xu G; Chen Q; Xue T; Peng H; Wang Y; Shi H; Duan S; Feng F Acad Radiol; 2023 Aug; 30(8):1572-1583. PubMed ID: 36566155 [TBL] [Abstract][Full Text] [Related]
22. Development and validation of radiomics nomogram for metastatic status of epithelial ovarian cancer. Leng Y; Wang X; Zheng T; Peng F; Xiong L; Wang Y; Gong L Sci Rep; 2024 May; 14(1):12456. PubMed ID: 38816463 [TBL] [Abstract][Full Text] [Related]
23. Using tumor habitat-derived radiomic analysis during pretreatment Zhao H; Su Y; Wang Y; Lyu Z; Xu P; Gu W; Tian L; Fu P Cancer Imaging; 2024 Feb; 24(1):26. PubMed ID: 38342905 [TBL] [Abstract][Full Text] [Related]
24. Computed tomography-based radiomics analysis to predict lymphovascular invasion in esophageal squamous cell carcinoma. Peng H; Yang Q; Xue T; Chen Q; Li M; Duan S; Cai B; Feng F Br J Radiol; 2022 Feb; 95(1130):20210918. PubMed ID: 34908477 [TBL] [Abstract][Full Text] [Related]
25. Development and Validation of a Comprehensive Model for Predicting Distant Metastasis of Solid Lung Adenocarcinoma: 3D Radiomics, 2D Radiomics and Clinical Features. Peng Z; Lin Z; He A; Yi L; Jin M; Chen Z; Tao Y; Yang Y; Cui C; Liu Y; Zuo M Cancer Manag Res; 2022; 14():3437-3448. PubMed ID: 36536823 [TBL] [Abstract][Full Text] [Related]
26. A Comprehensive Nomogram Combining CT Imaging with Clinical Features for Prediction of Lymph Node Metastasis in Stage I-IIIB Non-small Cell Lung Cancer. Zheng X; Shao J; Zhou L; Wang L; Ge Y; Wang G; Feng F Ther Innov Regul Sci; 2022 Jan; 56(1):155-167. PubMed ID: 34699046 [TBL] [Abstract][Full Text] [Related]
27. CT-based radiomics nomogram for differentiation of adrenal hyperplasia from lipid-poor adenoma: an exploratory study. Yuan H; Kang B; Sun K; Qin S; Ji C; Wang X BMC Med Imaging; 2023 Jan; 23(1):4. PubMed ID: 36611159 [TBL] [Abstract][Full Text] [Related]
28. Additional value of metabolic parameters to PET/CT-based radiomics nomogram in predicting lymphovascular invasion and outcome in lung adenocarcinoma. Nie P; Yang G; Wang N; Yan L; Miao W; Duan Y; Wang Y; Gong A; Zhao Y; Wu J; Zhang C; Wang M; Cui J; Yu M; Li D; Sun Y; Wang Y; Wang Z Eur J Nucl Med Mol Imaging; 2021 Jan; 48(1):217-230. PubMed ID: 32451603 [TBL] [Abstract][Full Text] [Related]
29. A clinical-radiomics nomogram for the preoperative prediction of lung metastasis in colorectal cancer patients with indeterminate pulmonary nodules. Hu T; Wang S; Huang L; Wang J; Shi D; Li Y; Tong T; Peng W Eur Radiol; 2019 Jan; 29(1):439-449. PubMed ID: 29948074 [TBL] [Abstract][Full Text] [Related]
30. Applying a nomogram based on preoperative CT to predict early recurrence of laryngeal squamous cell carcinoma after surgery. Yao Y; Jia C; Zhang H; Mou Y; Wang C; Han X; Yu P; Mao N; Song X J Xray Sci Technol; 2023; 31(3):435-452. PubMed ID: 36806538 [TBL] [Abstract][Full Text] [Related]
31. Prediction of response to neoadjuvant chemotherapy in advanced gastric cancer: A radiomics nomogram analysis based on CT images and clinicopathological features. Tan X; Yang X; Hu S; Ge Y; Wu Q; Wang J; Sun Z J Xray Sci Technol; 2023; 31(1):49-61. PubMed ID: 36314190 [TBL] [Abstract][Full Text] [Related]
32. Development and validation of a CT radiomics and clinical feature model to predict omental metastases for locally advanced gastric cancer. Wu A; Wu C; Zeng Q; Cao Y; Shu X; Luo L; Feng Z; Tu Y; Jie Z; Zhu Y; Zhou F; Huang Y; Li Z Sci Rep; 2023 May; 13(1):8442. PubMed ID: 37231100 [TBL] [Abstract][Full Text] [Related]
33. Preoperative CT Radiomics Nomogram for Predicting Microvascular Invasion in Stage I Non-Small Cell Lung Cancer. Deng L; Tang HZ; Luo YW; Feng F; Wu JY; Li Q; Qiang JW Acad Radiol; 2024 Jan; 31(1):46-57. PubMed ID: 37331866 [TBL] [Abstract][Full Text] [Related]
34. Application of a combined radiomics nomogram based on CE-CT in the preoperative prediction of thymomas risk categorization. Dong W; Xiong S; Lei P; Wang X; Liu H; Liu Y; Zou H; Fan B; Qiu Y Front Oncol; 2022; 12():944005. PubMed ID: 36081562 [TBL] [Abstract][Full Text] [Related]
35. A clinically practical radiomics-clinical combined model based on PET/CT data and nomogram predicts EGFR mutation in lung adenocarcinoma. Chang C; Zhou S; Yu H; Zhao W; Ge Y; Duan S; Wang R; Qian X; Lei B; Wang L; Liu L; Ruan M; Yan H; Sun X; Xie W Eur Radiol; 2021 Aug; 31(8):6259-6268. PubMed ID: 33544167 [TBL] [Abstract][Full Text] [Related]
36. Radiomics nomogram based on CT radiomics features and clinical factors for prediction of Ki-67 expression and prognosis in clear cell renal cell carcinoma: a two-center study. Li B; Zhu J; Wang Y; Xu Y; Gao Z; Shi H; Nie P; Zhang J; Zhuang Y; Wang Z; Yang G Cancer Imaging; 2024 Aug; 24(1):103. PubMed ID: 39107799 [TBL] [Abstract][Full Text] [Related]
37. Establishment and verification of a prediction model based on clinical characteristics and computed tomography radiomics parameters for distinguishing benign and malignant pulmonary nodules. Hou X; Wu M; Chen J; Zhang R; Wang Y; Zhang S; Yuan Z; Feng J; Xu L J Thorac Dis; 2024 Mar; 16(3):1984-1995. PubMed ID: 38617763 [TBL] [Abstract][Full Text] [Related]
38. CT texture analysis for the prediction of KRAS mutation status in colorectal cancer via a machine learning approach. Taguchi N; Oda S; Yokota Y; Yamamura S; Imuta M; Tsuchigame T; Nagayama Y; Kidoh M; Nakaura T; Shiraishi S; Funama Y; Shinriki S; Miyamoto Y; Baba H; Yamashita Y Eur J Radiol; 2019 Sep; 118():38-43. PubMed ID: 31439256 [TBL] [Abstract][Full Text] [Related]
39. A radiomics nomogram analysis based on CT images and clinical features for preoperative Lauren classification in gastric cancer. Nie T; Liu D; Ai S; He Y; Yang M; Chen J; Yuan Z; Liu Y Jpn J Radiol; 2023 Apr; 41(4):401-408. PubMed ID: 36370327 [TBL] [Abstract][Full Text] [Related]
40. A clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images predicts the existence of lymphovascular invasion / perineural invasion in patients with colorectal cancer. Zhang K; Ren Y; Xu S; Lu W; Xie S; Qu J; Wang X; Shen B; Pang P; Cai X; Sun J Med Phys; 2021 Sep; 48(9):4872-4882. PubMed ID: 34042185 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]