BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

604 related articles for article (PubMed ID: 35313076)

  • 41. Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors.
    Li X; Elshahawy AM; Guan C; Wang J
    Small; 2017 Oct; 13(39):. PubMed ID: 28834280
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage.
    Yun Q; Li L; Hu Z; Lu Q; Chen B; Zhang H
    Adv Mater; 2020 Jan; 32(1):e1903826. PubMed ID: 31566269
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors.
    Li L; Meng J; Zhang M; Liu T; Zhang C
    Chem Commun (Camb); 2021 Dec; 58(2):185-207. PubMed ID: 34881748
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Current Trends and Promising Electrode Materials in Micro-Supercapacitor Printing.
    Simonenko TL; Simonenko NP; Gorobtsov PY; Simonenko EP; Kuznetsov NT
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763411
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of 2D Materials to Potassium-Ion Hybrid Capacitors.
    Zhang D; Li L; Deng J; Gou Y; Fang J; Cui H; Zhao Y; Shang K
    ChemSusChem; 2021 May; 14(9):1974-1986. PubMed ID: 33829675
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal-Ion Hybrid Capacitors.
    Wu M; Zheng W; Hu X; Zhan F; He Q; Wang H; Zhang Q; Chen L
    Small; 2022 Dec; 18(50):e2205101. PubMed ID: 36285775
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage.
    El-Kady MF; Ihns M; Li M; Hwang JY; Mousavi MF; Chaney L; Lech AT; Kaner RB
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4233-8. PubMed ID: 25831542
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of Graphene Nanoplatelets in Supercapacitor Devices: A Review of Recent Developments.
    Worsley EA; Margadonna S; Bertoncello P
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296790
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Symmetric Electrodes for Electrochemical Energy-Storage Devices.
    Zhang L; Dou SX; Liu HK; Huang Y; Hu X
    Adv Sci (Weinh); 2016 Dec; 3(12):1600115. PubMed ID: 27981003
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Graphene: a promising 2D material for electrochemical energy storage.
    Dong Y; Wu ZS; Ren W; Cheng HM; Bao X
    Sci Bull (Beijing); 2017 May; 62(10):724-740. PubMed ID: 36659445
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Review of NiS-Based Electrode Nanomaterials for Supercapacitors.
    Guan Y; Hu K; Su N; Zhang G; Han Y; An M
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stretchable Energy Storage Devices Based on Carbon Materials.
    Li L; Wang L; Ye T; Peng H; Zhang Y
    Small; 2021 Dec; 17(48):e2005015. PubMed ID: 33624928
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Review on Recent Progress in the Development of Tungsten Oxide Based Electrodes for Electrochemical Energy Storage.
    Shinde PA; Jun SC
    ChemSusChem; 2020 Jan; 13(1):11-38. PubMed ID: 31605458
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Materials Design and System Construction for Conventional and New-Concept Supercapacitors.
    Wu Z; Li L; Yan JM; Zhang XB
    Adv Sci (Weinh); 2017 Jun; 4(6):1600382. PubMed ID: 28638780
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances.
    Naderi L; Shahrokhian S
    J Colloid Interface Sci; 2019 Apr; 542():325-338. PubMed ID: 30763900
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent Progress of 2D Layered Materials in Water-in-Salt/Deep Eutectic Solvent-Based Liquid Electrolytes for Supercapacitors.
    Melethil K; Kumar MS; Wu CM; Shen HH; Vedhanarayanan B; Lin TW
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049350
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Different metal cation-doped MnO
    Li X; Lin X; Yang N; Li X; Zhang W; Komarneni S
    J Colloid Interface Sci; 2023 Nov; 649():731-740. PubMed ID: 37385038
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transition metal chalcogenides for next-generation energy storage.
    Palchoudhury S; Ramasamy K; Han J; Chen P; Gupta A
    Nanoscale Adv; 2023 May; 5(10):2724-2742. PubMed ID: 37205287
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanostructured mixed transition metal oxide spinels for supercapacitor applications.
    Deka S
    Dalton Trans; 2023 Jan; 52(4):839-856. PubMed ID: 36541048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.