BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35313132)

  • 1. The air-inactivation of formate dehydrogenase FdsDABG from Cupriavidus necator.
    Hakopian S; Niks D; Hille R
    J Inorg Biochem; 2022 Jun; 231():111788. PubMed ID: 35313132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Characterization of the Complex Molybdenum Enzyme Formate Dehydrogenase from
    Harmer JR; Hakopian S; Niks D; Hille R; Bernhardt PV
    J Am Chem Soc; 2023 Nov; 145(47):25850-25863. PubMed ID: 37967365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Reversible Electrochemical Interconversion of Formate and CO
    Kalimuthu P; Hakopian S; Niks D; Hille R; Bernhardt PV
    J Phys Chem B; 2023 Oct; 127(39):8382-8392. PubMed ID: 37728992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient reduction of CO
    Yu X; Niks D; Mulchandani A; Hille R
    J Biol Chem; 2017 Oct; 292(41):16872-16879. PubMed ID: 28784661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from
    Young T; Niks D; Hakopian S; Tam TK; Yu X; Hille R; Blaha GM
    J Biol Chem; 2020 May; 295(19):6570-6585. PubMed ID: 32249211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Formate from CO
    Yu X; Niks D; Ge X; Liu H; Hille R; Mulchandani A
    Biochemistry; 2019 Apr; 58(14):1861-1868. PubMed ID: 30839197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Cupriavidus necator H16 as a host for heterologous production of formate dehydrogenase I of Methylorubrum extorquens: Possibilities and limitations.
    Ryu H; Nguyen CNM; Kuk Lee S; Park S
    Bioresour Technol; 2024 Feb; 394():130187. PubMed ID: 38096999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic and Kinetic Properties of the Molybdenum-containing, NAD+-dependent Formate Dehydrogenase from Ralstonia eutropha.
    Niks D; Duvvuru J; Escalona M; Hille R
    J Biol Chem; 2016 Jan; 291(3):1162-74. PubMed ID: 26553877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deconvolution of reduction potentials of formate dehydrogenase from Cupriavidus necator.
    Walker LM; Li B; Niks D; Hille R; Elliott SJ
    J Biol Inorg Chem; 2019 Sep; 24(6):889-898. PubMed ID: 31463592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial sulfite dehydrogenases in organotrophic metabolism: separation and identification in Cupriavidus necator H16 and in Delftia acidovorans SPH-1.
    Denger K; Weinitschke S; Smits THM; Schleheck D; Cook AM
    Microbiology (Reading); 2008 Jan; 154(Pt 1):256-263. PubMed ID: 18174144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural analysis of the fds operon encoding the NAD+-linked formate dehydrogenase of Ralstonia eutropha.
    Oh JI; Bowien B
    J Biol Chem; 1998 Oct; 273(41):26349-60. PubMed ID: 9756865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis study on amino acids around the molybdenum centre of the periplasmic nitrate reductase from Ralstonia eutropha.
    Hettmann T; Siddiqui RA; Frey C; Santos-Silva T; Romão MJ; Diekmann S
    Biochem Biophys Res Commun; 2004 Aug; 320(4):1211-9. PubMed ID: 15249219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oxidative inactivation of mitochondrial electron transport chain components and ATPase.
    Zhang Y; Marcillat O; Giulivi C; Ernster L; Davies KJ
    J Biol Chem; 1990 Sep; 265(27):16330-6. PubMed ID: 2168888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cupriavidus necator H16 Uses Flavocytochrome
    Lü C; Xia Y; Liu D; Zhao R; Gao R; Liu H; Xun L
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase.
    Cordas CM; Campaniço M; Baptista R; Maia LB; Moura I; Moura JJG
    J Inorg Biochem; 2019 Jul; 196():110694. PubMed ID: 31005821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-irradiation inactivation, protection, and repair of the sulfhydryl enzyme malate synthase. Effects of formate, superoxide dismutase, catalase, and dithiothreitol.
    Durchschlag H; Zipper P
    Radiat Environ Biophys; 1985; 24(2):99-111. PubMed ID: 4011852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator.
    Claassens NJ; Bordanaba-Florit G; Cotton CAR; De Maria A; Finger-Bou M; Friedeheim L; Giner-Laguarda N; Munar-Palmer M; Newell W; Scarinci G; Verbunt J; de Vries ST; Yilmaz S; Bar-Even A
    Metab Eng; 2020 Nov; 62():30-41. PubMed ID: 32805426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenesis study on the role of a lysine residue highly conserved in formate dehydrogenases and periplasmic nitrate reductases.
    Hettmann T; Siddiqui RA; von Langen J; Frey C; Romão MJ; Diekmann S
    Biochem Biophys Res Commun; 2003 Oct; 310(1):40-7. PubMed ID: 14511645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of 3 alpha-hydroxysteroid dehydrogenase by superoxide radicals. Modification of histidine and cysteine residues causes the conformational change.
    Kim HS; Minard P; Legoy MD; Thomas D
    Biochem J; 1986 Jan; 233(2):493-7. PubMed ID: 3006670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual control by regulatory gene fdsR of the fds operon encoding the NAD+-linked formate dehydrogenase of Ralstonia eutropha.
    Oh JI; Bowien B
    Mol Microbiol; 1999 Oct; 34(2):365-76. PubMed ID: 10564479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.