These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35313132)

  • 21. The rate of reaction of superoxide radical ion with oxyhaemoglobin and methaemoglobin.
    Sutton HC; Roberts PB; Winterbourn CC
    Biochem J; 1976 Jun; 155(3):503-10. PubMed ID: 182129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The crystal structure of Cupriavidus necator nitrate reductase in oxidized and partially reduced states.
    Coelho C; González PJ; Moura JG; Moura I; Trincão J; João Romão M
    J Mol Biol; 2011 May; 408(5):932-48. PubMed ID: 21419779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium.
    Axley MJ; Böck A; Stadtman TC
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8450-4. PubMed ID: 1924303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities.
    Cerqueira NM; Gonzalez PJ; Fernandes PA; Moura JJ; Ramos MJ
    Acc Chem Res; 2015 Nov; 48(11):2875-84. PubMed ID: 26509703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formate production through biocatalysis.
    Alissandratos A; Kim HK; Easton CJ
    Bioengineered; 2013; 4(5):348-50. PubMed ID: 23841981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding of NAD+ and L-threonine induces stepwise structural and flexibility changes in Cupriavidus necator L-threonine dehydrogenase.
    Nakano S; Okazaki S; Tokiwa H; Asano Y
    J Biol Chem; 2014 Apr; 289(15):10445-10454. PubMed ID: 24558034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases.
    Moura JJ; Brondino CD; Trincão J; Romão MJ
    J Biol Inorg Chem; 2004 Oct; 9(7):791-9. PubMed ID: 15311335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of superoxide dismutase, dithiothreitol and formate ion on the inactivation of papain by hydroxyl and superoxide radicals in aerated solutions.
    Lin WS; Armstrong DA; Lal M
    Int J Radiat Biol Relat Stud Phys Chem Med; 1978 Mar; 33(3):231-43. PubMed ID: 305900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Chemical modification of the lysine residues of bacterial formate dehydrogenase].
    Popov VO; Tishkov VI; Daĭnichenko VV; Egorov AM
    Biokhimiia; 1983 May; 48(5):747-55. PubMed ID: 6409166
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of crystalline formate dehydrogenase H from Escherichia coli. Stabilization, EPR spectroscopy, and preliminary crystallographic analysis.
    Gladyshev VN; Boyington JC; Khangulov SV; Grahame DA; Stadtman TC; Sun PD
    J Biol Chem; 1996 Apr; 271(14):8095-100. PubMed ID: 8626495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the effects of superoxide dismutase and cytochrome c on luminol chemiluminescence produced by xanthine oxidase-catalyzed reactions.
    Radi RA; Rubbo H; Prodanov E
    Biochim Biophys Acta; 1989 Jan; 994(1):89-93. PubMed ID: 2535790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J
    Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical modification of lysine residues in bacterial formate dehydrogenase.
    Egorov AM; Tishkov VI; Dainichenko VV; Popov VO
    Biochim Biophys Acta; 1982 Dec; 709(1):8-12. PubMed ID: 6817795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cu/Zn superoxide dismutase in excretory-secretory products of the human hookworm Necator americanus. An electron paramagnetic spectrometry study.
    Taiwo FA; Brophy PM; Pritchard DI; Brown A; Wardlaw A; Patterson LH
    Eur J Biochem; 1999 Sep; 264(2):434-8. PubMed ID: 10491088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of pH on kinetic parameters of NAD+-dependent formate dehydrogenase.
    Mesentsev AV; Lamzin VS; Tishkov VI; Ustinnikova TB; Popov VO
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):475-80. PubMed ID: 9020883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria.
    Hartmann T; Schwanhold N; Leimkühler S
    Biochim Biophys Acta; 2015 Sep; 1854(9):1090-100. PubMed ID: 25514355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.
    Hartmann T; Schrapers P; Utesch T; Nimtz M; Rippers Y; Dau H; Mroginski MA; Haumann M; Leimkühler S
    Biochemistry; 2016 Apr; 55(16):2381-9. PubMed ID: 27054466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxygen consumption by Campylobacter sputorum subspecies Bubulus with formate as substrate.
    Niekus HG; van Doorn E; Stouthamer AH
    Arch Microbiol; 1980 Sep; 127(2):137-43. PubMed ID: 7425784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of molybdenum and tungsten on synthesis and composition of formate dehydrogenase in Methanobacterium formicicum.
    May HD; Patel PS; Ferry JG
    J Bacteriol; 1988 Aug; 170(8):3384-9. PubMed ID: 2457011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular utilization of superoxide anion by indoleamine 2,3-dioxygenase of rabbit enterocytes.
    Taniguchi T; Hirata F; Hayaishi O
    J Biol Chem; 1977 Apr; 252(8):2774-6. PubMed ID: 192720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.