These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 35313175)
1. A novel and controllable SERS system for crystal violet and Rhodamine B detection based on copper nanonoodle substrates. Xu D; Li J; Zhang S; Zhang Y; Yang W; Wang Z; Chen J Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul; 275():121165. PubMed ID: 35313175 [TBL] [Abstract][Full Text] [Related]
2. Fractal theory and controllable preparation of centimeter level silver nanowire arrays and their application in melamine detection as SERS substrates. Xu D; Kang W; Zhang S; Yang W; Jiang H; Lei Y; Chen J Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct; 221():117184. PubMed ID: 31158773 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of high performance surface enhanced Raman scattering substrates by a solid-state ionics method. Xu D; Dong Z; Sun JL Nanotechnology; 2012 Mar; 23(12):125705. PubMed ID: 22407165 [TBL] [Abstract][Full Text] [Related]
5. Facile fabrication of Au-Ag alloy nanoparticles/Ag nanowires SERS substrates with bimetallic synergistic effect for ultra-sensitive detection of crystal violet and alkali blue 6B. Xu D; Zhou L; Zhang S; Wang Z; Yang W; Guo Q; Wang Z; Chen J Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 324():124981. PubMed ID: 39154405 [TBL] [Abstract][Full Text] [Related]
6. Facile fabrication of SERS arrays through galvanic replacement of silver onto electrochemically deposited copper micropatterns. Ke X; Lu B; Hao J; Zhang J; Qiao H; Zhang Z; Xing C; Yang W; Zhang B; Tang J Chemphyschem; 2012 Dec; 13(17):3786-9. PubMed ID: 23015311 [TBL] [Abstract][Full Text] [Related]
7. The optimisation of facile substrates for surface enhanced Raman scattering through galvanic replacement of silver onto copper. Mabbott S; Larmour IA; Vishnyakov V; Xu Y; Graham D; Goodacre R Analyst; 2012 Jun; 137(12):2791-8. PubMed ID: 22558633 [TBL] [Abstract][Full Text] [Related]
8. A surface-enhanced Raman scattering method for detection of trace glutathione on the basis of immobilized silver nanoparticles and crystal violet probe. Ouyang L; Zhu L; Jiang J; Tang H Anal Chim Acta; 2014 Mar; 816():41-9. PubMed ID: 24580853 [TBL] [Abstract][Full Text] [Related]
9. Silver nanoparticles deposited on porous silicon as a surface-enhanced Raman scattering (SERS) active substrate. Zeiri L; Rechav K; Porat Z; Zeiri Y Appl Spectrosc; 2012 Mar; 66(3):294-9. PubMed ID: 22449306 [TBL] [Abstract][Full Text] [Related]
10. Preparation and SERS performance of silver nanowires arrays on paper by automatic writing method. Wang K; Qiu Z; Qin Y; Feng L; Huang L; Xiao G Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121580. PubMed ID: 35809423 [TBL] [Abstract][Full Text] [Related]
11. Semi-quantitative analysis of gentian violet by surface-enhanced Raman spectroscopy using silver colloids. Liu F; Gu H; Yuan X; Dong X Appl Spectrosc; 2010 Nov; 64(11):1301-7. PubMed ID: 21073801 [TBL] [Abstract][Full Text] [Related]
12. High Surface-Enhanced Raman Scattering (SERS) Amplification Factor Obtained with Silver Printed Circuit Boards and the Influence of Phenolic Resins for the Characterization of the Pesticide Thiram. Silva de Almeida F; Bussler L; Marcio Lima S; Fiorucci AR; da Cunha Andrade LH Appl Spectrosc; 2016 Jul; 70(7):1157-64. PubMed ID: 27279502 [TBL] [Abstract][Full Text] [Related]
13. Surface-enhanced Raman spectroscopy using silver-coated porous glass-ceramic substrates. Pan Z; Zavalin A; Ueda A; Guo M; Groza M; Burger A; Mu R; Morgan SH Appl Spectrosc; 2005 Jun; 59(6):782-6. PubMed ID: 16053545 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of porous ZnO/Co Yao C; Hu F; Zhu J; Shen Y; Xie A Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121921. PubMed ID: 36174405 [TBL] [Abstract][Full Text] [Related]
15. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates. Huang J; Chen F; Zhang Q; Zhan Y; Ma D; Xu K; Zhao Y ACS Appl Mater Interfaces; 2015 Mar; 7(10):5725-35. PubMed ID: 25731067 [TBL] [Abstract][Full Text] [Related]
16. Rapid, controllable growth of silver nanostructured surface-enhanced Raman scattering substrates for red blood cell detection. Zhang S; Tian X; Yin J; Liu Y; Dong Z; Sun JL; Ma W Sci Rep; 2016 Apr; 6():24503. PubMed ID: 27094084 [TBL] [Abstract][Full Text] [Related]
17. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants. Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365 [TBL] [Abstract][Full Text] [Related]
18. Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper. Kim K; Lee HS J Phys Chem B; 2005 Oct; 109(40):18929-34. PubMed ID: 16853437 [TBL] [Abstract][Full Text] [Related]
19. Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate. Gao T; Wang Y; Wang K; Zhang X; Dui J; Li G; Lou S; Zhou S ACS Appl Mater Interfaces; 2013 Aug; 5(15):7308-14. PubMed ID: 23829572 [TBL] [Abstract][Full Text] [Related]
20. Quantitative surface enhanced Raman scattering detection based on the "sandwich" structure substrate. Zhang J; Qu S; Zhang L; Tang A; Wang Z Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(3):625-30. PubMed ID: 21531614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]